论文标题
平务范围内分布检测的拓扑结构学习
Topological Structure Learning for Weakly-Supervised Out-of-Distribution Detection
论文作者
论文摘要
分布(OOD)检测是安全部署模型在开放世界中的关键。对于OOD检测,比未标记的数据收集足够的标记数据(ID)通常更耗时且昂贵。当ID标记的数据受到限制时,由于其对ID标记的数据的量的高度依赖性,因此先前的OOD检测方法不再优越。基于有限的ID标记数据和足够的未标记数据,我们定义了一种称为弱监督分发检测(WSOOD)的新设置。为了解决新问题,我们提出了一种称为拓扑结构学习(TSL)的有效方法。首先,TSL使用一种对比度学习方法来构建ID和OOD数据的初始拓扑结构空间。其次,在初始拓扑空间中,TSL矿山有效的拓扑连接。最后,基于ID有限标记的数据和开采拓扑连接,TSL在新的拓扑空间中重建拓扑结构,以提高ID和OOD实例的可分离性。对几个代表性数据集的广泛研究表明,TSL明显胜过最先进的研究,从而在新的WSood环境中验证了我们方法的有效性和鲁棒性。
Out-of-distribution (OOD) detection is the key to deploying models safely in the open world. For OOD detection, collecting sufficient in-distribution (ID) labeled data is usually more time-consuming and costly than unlabeled data. When ID labeled data is limited, the previous OOD detection methods are no longer superior due to their high dependence on the amount of ID labeled data. Based on limited ID labeled data and sufficient unlabeled data, we define a new setting called Weakly-Supervised Out-of-Distribution Detection (WSOOD). To solve the new problem, we propose an effective method called Topological Structure Learning (TSL). Firstly, TSL uses a contrastive learning method to build the initial topological structure space for ID and OOD data. Secondly, TSL mines effective topological connections in the initial topological space. Finally, based on limited ID labeled data and mined topological connections, TSL reconstructs the topological structure in a new topological space to increase the separability of ID and OOD instances. Extensive studies on several representative datasets show that TSL remarkably outperforms the state-of-the-art, verifying the validity and robustness of our method in the new setting of WSOOD.