论文标题

了解NFT价格通过推文关键字分析转移

Understanding NFT Price Moves through Tweets Keywords Analysis

论文作者

Luo, Junliang, Jia, Yongzheng, Liu, Xue

论文摘要

随着加密货币市场的兴起和区块链技术的发展,毫无原则的代币(NFT)正在发展,这导致新兴的NFT市场迅速变得繁荣,然后是冷却的。然而,NFT市场的总体上升程序尚未得到充分理解。为此,我们认为社交媒体社区随着市场的增长而发展,值得探索和推理,因为可最小的信息可能会揭示市场行为。我们从NFT Twitter社区的角度探讨了该程序,并通过两个实验对NFT价格的影响进行了影响。我们对推文的数量和NFT价格时间序列进行了Granger因果关系测试,并发现推文的数量对(Granger-Couses)的价格或相反的19个顶级真实项目中的大部分是积极的影响,但CopyCat项目很少。此外,为了调查价格移动可预测性,我们尝试预测Markov归一化的NFT价格(代表价格移动的方向和幅度)给定推文提取的单词特征,并解释了对找到见解的重要性。我们的结果表明,社交媒体单词作为预测因素导致所有19个顶级项目的测试精度显然高于基线。基于功能重要性分析,我们发现一般与市场相关的单词和与NFT事件有关的单词都在预测价格转移方面具有明显的积极贡献。我们总结了具有顶部和最不重要的单词的分类和情感的特征。

Non-Fungible Token (NFT) is evolving with the rise of the cryptocurrency market and the development of blockchain techniques, which leads to an emerging NFT market that has become prosperous rapidly then followed by a cooldown. Nevertheless, the overall rise procedure of the NFT market has not been well understood. To this end, we consider that social media communities evolving alongside the market growth, are worth exploring and reasoning about, as the mineable information might unveil the market behaviors. We explore the procedure from the perspective of NFT Twitter communities and its impact on the NFT price moves with two experiments. We perform a Granger causality test on the number of tweets and the NFT price time series and find that the number of tweets has a positive impact on (Granger-causes) the price or reversely for larger part of the 19 top authentic projects but seldom copycat projects. Besides, to investigate the price moves predictability, we experiment on predicting Markov normalized NFT price (representing the direction and magnitude of price moves) given tweets-extracted word features and interpret the feature importance to find insights. Our results show that social media words as the predictors result in all 19 top projects having a testing accuracy evidently above the baseline. Based on the feature importance analysis, we find that both general market-related words and NFT event-related words have a markedly positive contribution in predicting price moves. We summarize the characteristics including categorization and sentiment for the words with the top and least feature importance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源