论文标题

STPOTR:同时使用非自动回形变压器进行机器人的同时进行人类轨迹和姿势预测。

STPOTR: Simultaneous Human Trajectory and Pose Prediction Using a Non-Autoregressive Transformer for Robot Following Ahead

论文作者

Mahdavian, Mohammad, Nikdel, Payam, TaherAhmadi, Mahdi, Chen, Mo

论文摘要

在本文中,我们开发了一个神经网络模型,以预测观察到的人类运动历史的未来人类运动。我们提出了一种非自动回旋变压器体系结构,以利用其并行性质,以便在测试时更容易训练和快速,准确的预测。所提出的结构将人类运动预测分为两个部分:1)人类轨迹,即随着时间的推移,髋关节3D位置和2)人类姿势,这是所有其他关节3D位置,随着时间的流逝,相对于固定的髋关节。我们建议同时做出两个预测,因为共享表示可以改善模型性能。因此,该模型由两组编码器和解码器组成。首先,应用于编码器输出的多头注意模块可改善人类轨迹。其次,将另一个多头自发项模块应用于与解码器输出相连的编码器输出,有助于学习时间依赖性。我们的模型在测试准确性和速度方面非常适合机器人应用,并且相对于最先进的方法进行了比较。我们通过机器人跟踪任务证明了我们作品的现实适用性,这是我们提议的模型充满挑战而实用的案例研究。

In this paper, we develop a neural network model to predict future human motion from an observed human motion history. We propose a non-autoregressive transformer architecture to leverage its parallel nature for easier training and fast, accurate predictions at test time. The proposed architecture divides human motion prediction into two parts: 1) the human trajectory, which is the hip joint 3D position over time and 2) the human pose which is the all other joints 3D positions over time with respect to a fixed hip joint. We propose to make the two predictions simultaneously, as the shared representation can improve the model performance. Therefore, the model consists of two sets of encoders and decoders. First, a multi-head attention module applied to encoder outputs improves human trajectory. Second, another multi-head self-attention module applied to encoder outputs concatenated with decoder outputs facilitates learning of temporal dependencies. Our model is well-suited for robotic applications in terms of test accuracy and speed, and compares favorably with respect to state-of-the-art methods. We demonstrate the real-world applicability of our work via the Robot Follow-Ahead task, a challenging yet practical case study for our proposed model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源