论文标题
检测稀疏多层网络中的种植分区
Detecting Planted Partition in Sparse Multi-Layer Networks
论文作者
论文摘要
多层网络用于表示个人通过不同类型的关系相互作用的个人关系之间的相互依赖性。为了研究信息理论相变,以检测多层网络的节点之间存在种植分区的存在,并具有额外的节点协变量信息和平均程度不同的平均值,MA和Nandy(2023)引入了多层上下文上下文的随机块模型。在本文中,当每个网络的平均节点学位大于$ 1 $时,我们考虑了在多层上下文随机块模型中检测种植分区的问题。我们建立了用于检测种植的两人分区的尖锐相变阈值。在相位转换阈值测试上的上方是可能的,而两部分的存在是可能的,而在阈值以下没有任何识别植物两分分的程序可以比随机猜测更好。我们进一步确定,派生的检测阈值与分区较弱恢复的阈值相吻合,并提供了准多项式时间算法来估计它。
Multilayer networks are used to represent the interdependence between the relational data of individuals interacting with each other via different types of relationships. To study the information-theoretic phase transitions in detecting the presence of planted partition among the nodes of a multi-layer network with additional nodewise covariate information and diverging average degree, Ma and Nandy (2023) introduced Multi-Layer Contextual Stochastic Block Model. In this paper, we consider the problem of detecting planted partitions in the Multi-Layer Contextual Stochastic Block Model, when the average node degrees for each network is greater than $1$. We establish the sharp phase transition threshold for detecting the planted bi-partition. Above the phase-transition threshold testing the presence of a bi-partition is possible, whereas below the threshold no procedure to identify the planted bi-partition can perform better than random guessing. We further establish that the derived detection threshold coincides with the threshold for weak recovery of the partition and provide a quasi-polynomial time algorithm to estimate it.