论文标题

$ r_i $ hahn类型的Biorthonal多项式

$R_I$ biorthogonal polynomials of Hahn type

论文作者

Vinet, Luc, Zaimi, Meri, Zhedanov, Alexei

论文摘要

介绍和研究了一个有限的$ r_i $多项式家庭。它由$ _ {3} f_ {2} $的一组多项式组成,其对合理函数的生物表达性的形式被阐明了。这些多项式显示出满足两个广义特征值问题:除了它们的复发关系$ r_i $类型外,还发现它们遵守差异方程。强调这一双光谱是具有三角形动作的操作员的三胞胎。

A finite family of $R_I$ polynomials is introduced and studied. It consists in a set of polynomials of $_{3}F_{2}$ form whose biorthogonality to an ensemble of rational functions is spelled out. These polynomials are shown to satisfy two generalized eigenvalue problems: in addition to their recurrence relation of $R_I$ type, they are also found to obey a difference equation. Underscoring this bispectrality is a triplet of operators with tridiagonal actions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源