论文标题

在本地急剧的N传递组上

On local sharply n-transitive groups

论文作者

Neshchadim, Mikhail V., Simonov, Andrey A.

论文摘要

该论文致力于拓扑组对流形的行动的概括。我们考虑一个本地拓扑组,而不是拓扑群体,它概括了拓扑组中A〜胚芽的概念或一个〜社区的概念。引入了本地群体在拓扑空间的行动的概念。 该论文构建了本地$ n $ thansitive群体和本地$ n $ -pseudofields的理论。局部急剧$ n $ n $的群体被简化为简单的代数对象 - 本地$ n $ -n $ -pseudofields,类似于将Lie群体减少到Lie代数的方式,而急剧的两传递组则减少到近域。这可能很有用,因为与本地紧凑型和连接的急剧连接相反,$ n $ n $ n $ n> 3 $不存在,因此,对于任何$ n $,local prinper $ n $ thum-n $ thermantitive组都存在,例如,$ gl_n(\ mathbb {r})$ n $。所考虑的群体也是有限$ n $ n $ n $的,这也是谎言组,这为他们的研究提供了额外的方法。

The paper is devoted to generalizations of actions of topological groups on manifolds. Instead of a topological group, we consider a local topological group generalizing the notion of a~germ or a~neighborhood in a topological group. The notion of an action of a local group on a topological space is introduced. The paper constructs the theory of local sharply $n$-transitive groups and local $n$-pseudofields. Local sharply $n$-transitive groups are reduced to simpler algebraic objects -- local $n$-pseudofields, similarly to the way Lie groups are reduced to Lie algebras, and sharply two-transitive groups, are reduced to neardomains. This can be useful, since, opposite to locally compact and connected sharply $n$-transitive groups, which are absent for $n > 3$, local sharply $n$-transitive groups exist for any $n$, for example, the group $GL_n(\mathbb{R})$. Being boundedly sharply $n$-transitive, the groups under consideration are also Lie groups, which gives extra methods for their study.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源