论文标题

海胆精子细胞的趋化性通过深度加固学习

Chemotaxis of sea urchin sperm cells through deep reinforcement learning

论文作者

Mo, Chaojie, Bian, Xin

论文摘要

通过模仿生物学微晶状体,可以设计微型机器人,以实现微观的钙和生物医学操纵的靶向递送。但是,在复杂的环境中,使微型机器人能够操纵仍然是一个巨大的挑战。机器学习算法提供了一种工具,可提高合成微型机器人的移动性和灵活性,因此可以帮助我们设计真正的智能微型机器人。在这项工作中,我们研究了海胆精子细胞模型如何在化学吸收剂浓度领域中自我趋化运动。我们采用人工神经网络充当决策代理,并通过深入的强化学习(DRL)算法促进精子细胞来发现有效的操纵策略。我们的结果表明,仅利用有限的环境信息,DRL可以实现与现实的趋化行为,与现实的行为非常相似。在大多数情况下,DRL算法比人类脱离的算法更有效地发现了效率的策略。此外,如果人工神经网络还考虑了额外的流动信息,DRL甚至可以利用外部干扰来促进趋化运动。我们的结果为海胆精子细胞的趋化过程提供了见解,并为微型机器人的智能操纵准备了指导。

By imitating biological microswimmers, microrobots can be designed to accomplish targeted delivery of cargos and biomedical manipulations at microscale. However, it is still a great challenge to enable microrobots to maneuver in a complex environment. Machine learning algorithms offer a tool to boost mobility and flexibility of a synthetic microswimmer, hence could help us design truly smart microrobots. In this work, we investigate how a model of sea urchin sperm cell can self-learn chemotactic motion in a chemoattractant concentration field. We employ an artificial neural network to act as a decision-making agent and facilitate the sperm cell to discover efficient maneuver strategies through a deep reinforcement learning (DRL) algorithm. Our results show that chemotactic behaviours, very similar to the realistic ones, can be achieved by the DRL utilizing only limited environmental information. In most cases, the DRL algorithm discovers more efficient strategies than the human-devised one. Furthermore, the DRL can even utilize an external disturbance to facilitate the chemotactic motion if the extra flow information is also taken into account by the artificial neural network. Our results provide insights to the chemotactic process of sea urchin sperm cells and also prepare guidance for the intelligent maneuver of microrobots.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源