论文标题
物联网基本电台任务卸载智能农业的风险敏感强化学习
IoT-Aerial Base Station Task Offloading with Risk-Sensitive Reinforcement Learning for Smart Agriculture
论文作者
论文摘要
航空基站(ABS)允许智能农场从物联网(IoT)设备的ABS卸载复杂任务的处理责任。 IoT设备的能量和计算资源有限,因此需要为需要ABS支持的系统提供高级解决方案。本文介绍了一种新型的基于多进取的风险敏感的增强学习方法,用于针对智能农业的ABS任务调度。该问题被定义为任务卸载,并在截止日期之前完成IoT任务的严格条件。此外,该算法还必须考虑ABS的能量能力有限。结果表明,我们提出的方法的表现优于几种启发式方法和经典的Q学习方法。此外,我们提供了一个混合整数线性编程解决方案,以确定性能的下限,并阐明我们的风险敏感解决方案与最佳解决方案之间的差距。该比较证明了我们的广泛仿真结果表明,我们的方法是一种有前途的方法,可以为智能农场中的物联网任务提供保证的任务处理服务,同时增加了该农场中ABS的悬停时间。
Aerial base stations (ABSs) allow smart farms to offload processing responsibility of complex tasks from internet of things (IoT) devices to ABSs. IoT devices have limited energy and computing resources, thus it is required to provide an advanced solution for a system that requires the support of ABSs. This paper introduces a novel multi-actor-based risk-sensitive reinforcement learning approach for ABS task scheduling for smart agriculture. The problem is defined as task offloading with a strict condition on completing the IoT tasks before their deadlines. Moreover, the algorithm must also consider the limited energy capacity of the ABSs. The results show that our proposed approach outperforms several heuristics and the classic Q-Learning approach. Furthermore, we provide a mixed integer linear programming solution to determine a lower bound on the performance, and clarify the gap between our risk-sensitive solution and the optimal solution, as well. The comparison proves our extensive simulation results demonstrate that our method is a promising approach for providing a guaranteed task processing services for the IoT tasks in a smart farm, while increasing the hovering time of the ABSs in this farm.