论文标题

Neumann-Rosochatius系统用于$ ads_3 \ times s^3 \ times s^3 \ times s^1 $ with flux的旋转字符串系统

Neumann-Rosochatius system for rotating strings in $AdS_3 \times S^3\times S^3\times S^1$ with flux

论文作者

Chakraborty, Adrita, Nayak, Rashmi R., Pandit, Priyadarshini, Panigrahi, Kamal L.

论文摘要

$ ads_3 \ times s^3 \ times s^3 \ times s^1 $带有混合通量的字符串表现出精确的集成性。我们希望以$ ads_3 \ times s^3 \ times s^3 \ times s^3 \ times s^3 \ times s^1 $与纯nsns flux构建一个以IIB类超级重力动作开头的字符串的Neumann-Rosochatius(NR)模型。我们观察到,Lagrangian的形式和所考虑系统的运动的Uhlenbeck积分是NR样的,具有一些合适的变形,最终由于存在磁通而出现。我们利用变形的NR模型的可集成框架来分析仅在$ s^3 \ times s^1 $中移动的刚性旋转的尖峰字符串。我们进一步提出了一些关于在$ s^1 $中的非零角动量$ j $的情况下,关于尖峰的圆形性质的数学猜测。

Strings on $AdS_3 \times S^3\times S^3\times S^1$ with mixed flux exhibit exact integrability. We wish to construct an integrable Neumann-Rosochatius (NR) model of strings starting with the type IIB supergravity action in $AdS_3 \times S^3\times S^3\times S^1$ with pure NSNS flux. We observe that the forms of the Lagrangian and the Uhlenbeck integrals of motion of the considered system are NR-like with some suitable deformations which eventually appear due to the presence of flux. We utilize the integrable framework of the deformed NR model to analyze rigidly rotating spiky strings moving only in $S^3\times S^1$. We further present some mathematical speculations on the rounding-off nature of the spike in the presence of non-zero angular momentum $J$ in $S^1$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源