论文标题
3DMM-RF:3D脸型建模的卷积辐射场
3DMM-RF: Convolutional Radiance Fields for 3D Face Modeling
论文作者
论文摘要
面部3D形态模型是一个主要的计算机视觉主题,具有无数应用程序,并且在过去二十年中已得到了高度优化。深层生成网络的巨大改进创造了改善此类模型的各种可能性,并引起了广泛的兴趣。此外,神经辐射领域的最新进展正在彻底改变已知场景的小说视图综合。在这项工作中,我们提出了一个面部3D形态模型,该模型利用了上述两者,并且可以准确地对受试者的身份,姿势和表达进行建模,并以任意照明形式呈现。这是通过利用强大的基于风格的生成器来克服神经辐射场的两个主要弱点,即它们的刚度和渲染速度来实现的。我们介绍了一个基于样式的生成网络,该网络在一个通过中综合,仅在神经辐射场的所需渲染样本中综合。我们创建了一个庞大的标记为面部渲染的合成数据集,并在这些数据上训练网络,以便它可以准确地建模并推广到面部身份,姿势和外观。最后,我们表明该模型可以准确地适合“野外”的姿势和照明的面部图像,提取面部特征,并用于在可控条件下重新呈现面部。
Facial 3D Morphable Models are a main computer vision subject with countless applications and have been highly optimized in the last two decades. The tremendous improvements of deep generative networks have created various possibilities for improving such models and have attracted wide interest. Moreover, the recent advances in neural radiance fields, are revolutionising novel-view synthesis of known scenes. In this work, we present a facial 3D Morphable Model, which exploits both of the above, and can accurately model a subject's identity, pose and expression and render it in arbitrary illumination. This is achieved by utilizing a powerful deep style-based generator to overcome two main weaknesses of neural radiance fields, their rigidity and rendering speed. We introduce a style-based generative network that synthesizes in one pass all and only the required rendering samples of a neural radiance field. We create a vast labelled synthetic dataset of facial renders, and train the network on these data, so that it can accurately model and generalize on facial identity, pose and appearance. Finally, we show that this model can accurately be fit to "in-the-wild" facial images of arbitrary pose and illumination, extract the facial characteristics, and be used to re-render the face in controllable conditions.