论文标题

多校准回归以进行下游公平

Multicalibrated Regression for Downstream Fairness

论文作者

Globus-Harris, Ira, Gupta, Varun, Jung, Christopher, Kearns, Michael, Morgenstern, Jamie, Roth, Aaron

论文摘要

我们展示了如何采用回归函数$ \ hat {f} $,该{f} $适当地``多校准''并有效地将其后处理成近似错误的分类器,以最大程度地减少满足各种公平限制的分类器。后处理不需要标记的数据,只有一定数量的未标记数据和计算。计算$ \ hat f $的计算和样本复杂性要求与解决单个公平学习任务的要求相媲美,但实际上可以用来有效地解决许多不同的下游公平约束的学习问题。我们的后处理方法很容易处理相交组,从而将先前的工作推广到后处理回归功能上,以满足仅应用于分离组的公平约束。我们的工作扩展了最新的工作,表明多校准的回归函数是``omnipredictors''(即可以在后处理以最佳地解决无约束的ERM问题)以进行约束优化。

We show how to take a regression function $\hat{f}$ that is appropriately ``multicalibrated'' and efficiently post-process it into an approximately error minimizing classifier satisfying a large variety of fairness constraints. The post-processing requires no labeled data, and only a modest amount of unlabeled data and computation. The computational and sample complexity requirements of computing $\hat f$ are comparable to the requirements for solving a single fair learning task optimally, but it can in fact be used to solve many different downstream fairness-constrained learning problems efficiently. Our post-processing method easily handles intersecting groups, generalizing prior work on post-processing regression functions to satisfy fairness constraints that only applied to disjoint groups. Our work extends recent work showing that multicalibrated regression functions are ``omnipredictors'' (i.e. can be post-processed to optimally solve unconstrained ERM problems) to constrained optimization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源