论文标题

神经随机控制

Neural Stochastic Control

论文作者

Zhang, Jingdong, Zhu, Qunxi, Lin, Wei

论文摘要

控制问题总是具有挑战性的,因为它们是由随机性和随机性无处不在的现实系统引起的。这自然而紧急地要求制定有效的神经控制策略,不仅可以稳定确定性方程,还可以稳定随机系统。在这里,为了满足此最高调用,我们提出了两种类型的控制器,即基于随机Lyapunov理论的指数稳定剂(ES)和基于随机渐近稳定性理论的渐近稳定剂(AS)。 ES可以使受控系统成倍收敛,但需要较长的计算时间。相反,AS使训练更快,但它只能确保控制目标的渐近(而不是指数)吸引力。因此,这两个随机控制器在应用中是互补的。我们还严格研究了线性控制器和提议的神经随机控制器在收敛时间和能量成本中,并在这两个索引中比较它们。更重要的是,我们使用几种代表性的物理系统来说明拟议控制器在动力学系统稳定中的实用性。

Control problems are always challenging since they arise from the real-world systems where stochasticity and randomness are of ubiquitous presence. This naturally and urgently calls for developing efficient neural control policies for stabilizing not only the deterministic equations but the stochastic systems as well. Here, in order to meet this paramount call, we propose two types of controllers, viz., the exponential stabilizer (ES) based on the stochastic Lyapunov theory and the asymptotic stabilizer (AS) based on the stochastic asymptotic stability theory. The ES can render the controlled systems exponentially convergent but it requires a long computational time; conversely, the AS makes the training much faster but it can only assure the asymptotic (not the exponential) attractiveness of the control targets. These two stochastic controllers thus are complementary in applications. We also investigate rigorously the linear controller and the proposed neural stochastic controllers in both convergence time and energy cost and numerically compare them in these two indexes. More significantly, we use several representative physical systems to illustrate the usefulness of the proposed controllers in stabilization of dynamical systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源