论文标题
超级Aksz构造,积分形式和二维$ \ Mathcal n =(1,1)$ Sigma模型
Super AKSZ construction, integral forms, and the 2-dimensional $\mathcal N=(1,1)$ sigma model
论文作者
论文摘要
我们讨论了AKSZ结构的自然扩展,以通过所选积分形式给出的超曼佛给出来源。然后,我们将重点放在特殊情况下,其目标是Courant代数。在最简单的情况下,这导致了由Grassi-Maccaferri和Cremonini-Grassi开发的Super Chern-Simons理论的BV版本。对于确切的courant代数,我们得出边界上的二维$ \ Mathcal n =(1,1)$ sigma模型,以及Wess-Zumino术语,与波斯尼克案例中的ševera的方法并行。
We discuss a natural extension of the AKSZ construction to the case where the source is given by a supermanifold with a chosen integral form. We then focus on the special case with the target given by a Courant algebroid. In the simplest case this leads to the BV version of the super Chern-Simons theory, as developed by Grassi-Maccaferri and Cremonini-Grassi. In the case of exact Courant algebroids we derive the 2-dimensional $\mathcal N=(1,1)$ sigma model on the boundary, together with the Wess-Zumino term, paralleling the approach of Ševera in the bosonic case.