论文标题
具有角相关功能的原始非高斯性非高斯:DES的积分约束和验证
Primordial non-Gaussianity with Angular correlation function: Integral constraint and validation for DES
论文作者
论文摘要
本地原始非高斯(PNG)是通货膨胀基础物理的有前途的有前途的,其特征在于$ f _ {\ rm nl}^{\ rm loc} $。我们提出了使用与规模依赖性偏置的2点角相关函数(ACF)来测量$ f _ {\ rm nl}^{\ rm loc} $的方法。工作的重点之一是整体约束。当从数据估算星系的平均数密度时,会出现此条件,并且是获得无偏见的$ f _ {\ rm nl}^{\ rm loc} $约束的关键。对两种类型的模拟进行了分析:$ \ sim 246 $ goliat-png n-body小区域仿真,$ f _ {\ rm nl} $等于-100和100,以及1952 Gaussian Ice-Cola模拟,$ f _ {\ rm nl} = 0 $ the deS angular and deS angular和dedshift the Angular和dedshift the cansular angular和dedshift。我们使用Goliat-PNG模拟的合奏来显示在测量PNG时积分约束的重要性,在其中,我们在$1σ$中恢复了$ f _ {\ rm nl} $的基金值,包括整体约束。相比之下,当不包括$ΔF_{\ rm nl} \ sim 100 $时,我们发现了偏见。对于类似DES的场景,我们预测$Δf_ {\ rm nl} \ sim 23 $的偏置相当于$1.8σ$,当时不将IC用于$ f _ {\ rm nl}的信托值的IC时。我们使用冰 - 彩色模拟在类似于DES的设置中验证我们的分析,从而发现了不同的分析选择:最佳拟合估计器,IC,BAO阻尼,协方差和量表选择的效果。我们预测$ f _ {\ rm nl} $在$σ(f _ {\ rm nl})内的测量值时,当使用DES-Y3 BAO样本时,ACF在$ 1 \ {\ rm {\ rm deg} <θ<θ<20 \ 20 \ rm veg {\ rm rm deg} $范围内。
Local primordial non-Gaussianity (PNG) is a promising observable of the underlying physics of inflation, characterised by $f_{\rm NL}^{\rm loc}$. We present the methodology to measure $f_{\rm NL}^{\rm loc}$ from the Dark Energy Survey (DES) data using the 2-point angular correlation function (ACF) with scale-dependent bias. One of the focuses of the work is the integral constraint. This condition appears when estimating the mean number density of galaxies from the data and is key in obtaining unbiased $f_{\rm NL}^{\rm loc}$ constraints. The methods are analysed for two types of simulations: $\sim 246$ GOLIAT-PNG N-body small area simulations with $f_{\rm NL}$ equal to -100 and 100, and 1952 Gaussian ICE-COLA mocks with $f_{\rm NL}=0$ that follow the DES angular and redshift distribution. We use the ensemble of GOLIAT-PNG mocks to show the importance of the integral constraint when measuring PNG, where we recover the fiducial values of $f_{\rm NL}$ within the $1σ$ when including the integral constraint. In contrast, we found a bias of $Δf_{\rm NL}\sim 100$ when not including it. For a DES-like scenario, we forecast a bias of $Δf_{\rm NL} \sim 23$, equivalent to $1.8σ$, when not using the IC for a fiducial value of $f_{\rm NL}=100$. We use the ICE-COLA mocks to validate our analysis in a realistic DES-like setup finding it robust to different analysis choices: best-fit estimator, the effect of IC, BAO damping, covariance, and scale choices. We forecast a measurement of $f_{\rm NL}$ within $σ(f_{\rm NL})=31$ when using the DES-Y3 BAO sample, with the ACF in the $1\ {\rm deg}<θ<20\ {\rm deg}$ range.