论文标题

在邻接和(无迹象)的中央仪和某些有限非亚伯群的共同中心图的拉普拉斯光谱

On adjacency and (signless) Laplacian spectra of centralizer and co-centralizer graphs of some finite non-abelian groups

论文作者

Kalita, Jharna, Paul, Somnath

论文摘要

令$ g $为有限的非亚伯集团。 $ g $的centralizer图是一个简单的无向图$γ_{cent}(g)$,其顶点是$ g $的适当集中式,并且只有当它们的基础性是相同的{\ rm \ rm \ rm \ cite {omer}}时,两个顶点才相邻。中央式图的补充称为共同中心器图。在本文中,我们研究了某些有限的非亚伯利亚群体的中央式和共居住者图的邻接和(无价)的拉普拉斯光谱,并在一组上获得一些条件,以使中心化合物和共居住者图是邻接的,(无标志)laplacian laplacian积分。

Let $G$ be a finite non abelian group. The centralizer graph of $G$ is a simple undirected graph $Γ_{cent}(G)$, whose vertices are the proper centralizers of $G$ and two vertices are adjacent if and only if their cardinalities are identical {\rm\cite{omer}}. The complement of the centralizer graph is called the co-centralizer graph. In this paper, we investigate the adjacency and (signless) Laplacian spectra of centralizer and co-centralizer graphs of some classes of finite non-abelian groups and obtain some conditions on a group so that the centralizer and co-centralizer graphs are adjacency, (signless) Laplacian integral.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源