论文标题
CGC方法中的偶极 - 偶极散射幅度
Dipole-dipole scattering amplitude in CGC approach
论文作者
论文摘要
在本文中,我们提出了QCD中偶极密度的复发关系,这使我们能够找到从溶液到BFKL方程的这些密度。我们将这些关系解决在BFKL内核的扩散近似中。基于此解决方案,我们发现了大型Pomeron环的总和。此总和会产生散射幅度,该幅度在迅速的$ y $下降低了。事实证明,散射幅度的这种行为是扩散近似的伪像。这种近似导致单位化在深度非弹性散射和高能偶极 - 偶极相互作用中都没有饱和。
In this paper we propose recurrence relations for the dipole densities in QCD, which allows us to find these densities from the solution to the BFKL equation. We resolve these relations in the diffusion approximation for the BFKL kernel. Based on this solution, we found the sum of large Pomeron loops. This sum generates the scattering amplitude that decreases at large values of rapidity $Y$. It turns out that such behaviour of the scattering amplitudes is an artifact of diffusion approximation. This approximation leads to the unitarization without saturation both in deep inelastic scattering and in dipole-dipole interaction at high energies.