论文标题

稳定分层的大气边界层中速度的对数曲线

Logarithmic profiles of velocity in stably stratified atmospheric boundary layers

论文作者

Cheng, Yu, Grachev, Andrey, van Heerwaarden, Chiel

论文摘要

冯·卡尔曼(vonKármán)在湍流剪切流的近壁区域首先提出的通用速度对数法是湍流理论的基石之一。当浮力效应很重要时,通常认为普遍的速度对数定律会根据Monin-Obukhov的相似性理论(大多数)分解,该理论几乎在所有的全球天气和气候模型中都用于描述大气边界层浮力的平均速度曲线的依赖性。与大多数人相反,我们提出了基于直接的数值模拟和广泛浮力效应的直接数值模拟和现场观测值,在稳定分层的大气边界层中提出了新的对数谱。我们发现浮力不会改变速度曲线的对数特性,而是在稳定的分层条件下修改了对数定律的斜率。

The universal velocity log law first proposed by von Kármán in the near-wall region of turbulent shear flows is one of the cornerstones of turbulence theory. When buoyancy effects are important, the universal velocity log law is typically believed to break down according to Monin-Obukhov similarity theory (MOST), which has been used in almost all global weather and climate models to describe the dependence of the mean velocity profiles on buoyancy in the atmospheric boundary layer. In contrast to MOST, we propose new logarithmic profiles of near-wall mean velocity in the stably stratified atmospheric boundary layers based on direct numerical simulations and field observations across a wide range of buoyancy effects. We find that buoyancy does not change the logarithmic nature of velocity profiles but instead modifies the slope of the log law in stably stratified conditions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源