论文标题

线性对流的线性离散方法有效的多移民降低时间

Efficient multigrid reduction-in-time for method-of-lines discretizations of linear advection

论文作者

De Sterck, H., Falgout, R. D., Krzysik, O. A., Schroder, J. B.

论文摘要

近几十年来,部分微分方程(PDE)的平行时间一直是强烈发展的主题,尤其是对于扩散为主的问题。然而,在文献中已广泛报道,这些方法中的许多方法在以优势为主的问题上表现不佳。在这里,我们分析了恒定波速线性对流问题的离散化,分析了多族降低时间(MGRIT)的特定迭代平行算法(MGRIT)。我们专注于常见的方法离散化,这些离散是在及时采用上风有限差异的。使用我们在以前的工作中开发的收敛框架,我们证明了这些离散化的子类,如果使用在粗网格上重新验证细网格问题的标准方法,则不可能相对于CFL数量,而不可能进行稳健的mgrit收敛。这种差的收敛性和非舒适性至少部分是由于粗网格校正不足而导致的,该模式被称为特征成分。该粗网格操作员与以前的工作有关,并使用半拉格朗日离散化,并隐式处理过经过处理的截断误差校正。理论和数值实验表明,对于许多所考虑的线路离散方法,粗网格操作员会产生快速收敛的趋势,包括对高级的隐式和明确离散化。并行结果表明,对顺序时间步长的速度大幅加速。

Parallel-in-time methods for partial differential equations (PDEs) have been the subject of intense development over recent decades, particularly for diffusion-dominated problems. It has been widely reported in the literature, however, that many of these methods perform quite poorly for advection-dominated problems. Here we analyze the particular iterative parallel-in-time algorithm of multigrid reduction-in-time (MGRIT) for discretizations of constant-wave-speed linear advection problems. We focus on common method-of-lines discretizations that employ upwind finite differences in space and Runge-Kutta methods in time. Using a convergence framework we developed in previous work, we prove for a subclass of these discretizations that, if using the standard approach of rediscretizing the fine-grid problem on the coarse grid, robust MGRIT convergence with respect to CFL number and coarsening factor is not possible. This poor convergence and non-robustness is caused, at least in part, by an inadequate coarse-grid correction for smooth Fourier modes known as characteristic components.We propose an alternative coarse-grid that provides a better correction of these modes. This coarse-grid operator is related to previous work and uses a semi-Lagrangian discretization combined with an implicitly treated truncation error correction. Theory and numerical experiments show the coarse-grid operator yields fast MGRIT convergence for many of the method-of-lines discretizations considered, including for both implicit and explicit discretizations of high order. Parallel results demonstrate substantial speed-up over sequential time-stepping.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源