论文标题
量子旋转厅绝缘子候选材料中未保护的边缘模式
Unprotected edge modes in quantum spin Hall insulator candidate materials
论文作者
论文摘要
量子自旋大厅绝缘子候选材料(例如HGTE/CDTE和INAS/GASB异质结构)的实验表明,除了拓扑保护的螺旋边缘模式外,这些多层异质结构还可能支持其他边缘状态,这可以有助于散射和运输。我们使用第一原理计算来得出HGTE/CDTE,HGS/CDTE和INAS/GASB异质结构的有效的紧密结合模型,并且我们表明所有这些材料都支持对边缘终止敏感的其他边缘状态。我们将这些状态的显微镜起源追溯到一个最小模型,该模型支持具有非平凡量子几何形状的平坦带,从而导致边缘的极化电荷。我们表明,当平面带相互耦合时,以及其他状态形成汉密尔顿人描述完整的异质结构时,极化电荷转换为附加的边缘状态。有趣的是,在HGTE/CDTE量子井中,额外的边缘状态远离费米水平,因此它们不影响运输,而是在HGS/CDTE和INAS/INAS/GASB异质结构中出现在宽大的能量间隙中,从而增加了多模缘传输的可能性。最后,我们证明,由于这些额外的边缘模式是非探针的,因此可以通过侧门或化学掺杂来修改边缘潜力,从而将它们从散装能量隙中删除。
The experiments in quantum spin Hall insulator candidate materials, such as HgTe/CdTe and InAs/GaSb heterostructures, indicate that in addition to the topologically protected helical edge modes these multilayer heterostructures may also support additional edge states, which can contribute to the scattering and the transport. We use first-principles calculations to derive an effective tight-binding model for HgTe/CdTe, HgS/CdTe and InAs/GaSb heterostructures, and we show that all these materials support additional edge states which are sensitive to the edge termination. We trace the microscopic origin of these states back to a minimal model supporting flat bands with a nontrivial quantum geometry that gives rise to polarization charges at the edges. We show that the polarization charges transform into the additional edge states when the flat bands are coupled to each other and to the other states to form the Hamiltonian describing the full heterostructure. Interestingly, in the HgTe/CdTe quantum wells the additional edge states are far away from the Fermi level so that they do not contribute to the transport but in the HgS/CdTe and InAs/GaSb heterostructures they appear within the bulk energy gap giving rise to the possibility of multimode edge transport. Finally, we demonstrate that because these additional edge modes are non-topological it is possible to remove them from the bulk energy gap by modifying the edge potential for example with the help of a side gate or chemical doping.