论文标题

基于插值的沉浸式有限元和等几何分析

Interpolation-based immersed finite element and isogeometric analysis

论文作者

Fromm, Jennifer E., Wunsch, Nils, Xiang, Ru, Zhao, Han, Maute, Kurt, Evans, John A., Kamensky, David

论文摘要

我们为插值函数空间从未固定的背景网格网格中插入嵌入式有限元和等几何方法引入了一个新的范式,以在前景网格上定义的Lagrange有限元元素空间,该空格定义在前景网格上,该空格捕获了域几何形状,但否则对元素质量或连接性的最小约束却对其进行了管理。这是从等几何分析文献中拉格朗格提取的概念的概括,也与有限单元格和材料点方法的某些变体有关。至关重要的是,插值可以是近似的,而不会牺牲高阶收敛速率,这将当前方法与现有有限单元格,cutfem和沉浸式几何方法区分开来。插值范式还允许不创新的现有有限元软件进行沉浸分析。我们为模型问题分析了基于插值的沉浸式范式的性能,并在开源燃烧元素有限元软件的基础上实现它,以将其应用于流体,固体和结构力学中的各种问题,在这些问题中,我们将高级准确性和适用性应用于诸如修剪式条形线斑块之类的实用性的实用性。

We introduce a new paradigm for immersed finite element and isogeometric methods based on interpolating function spaces from an unfitted background mesh into Lagrange finite element spaces defined on a foreground mesh that captures the domain geometry but is otherwise subject to minimal constraints on element quality or connectivity. This is a generalization of the concept of Lagrange extraction from the isogeometric analysis literature and also related to certain variants of the finite cell and material point methods. Crucially, the interpolation may be approximate without sacrificing high-order convergence rates, which distinguishes the present method from existing finite cell, CutFEM, and immersogeometric approaches. The interpolation paradigm also permits non-invasive reuse of existing finite element software for immersed analysis. We analyze the properties of the interpolation-based immersed paradigm for a model problem and implement it on top of the open-source FEniCS finite element software, to apply it to a variety of problems in fluid, solid, and structural mechanics where we demonstrate high-order accuracy and applicability to practical geometries like trimmed spline patches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源