论文标题
伪造矩阵中的变性和对称性破裂
Degeneracies and symmetry breaking in pseudo-Hermitian matrices
论文作者
论文摘要
伪矩阵的真实特征值,例如真实矩阵和$ \ Mathcal {pt - } $对称矩阵,经常分为复杂的共轭对。这伴随着特征向量的某些对称性的破坏,并且通常在系统行为上也发生了巨大变化。在本文中,我们对伪 - 温米特矩阵的特征空间进行了分类,并表明这种对称性破裂发生在且仅当相反类型的特征值碰撞在复杂特征值平面的真实轴上时。这使得所有特征值都是真实的参数空间中断开区域的分类 - 物理上对应于系统的稳定阶段。这些断开的区域被特殊的表面围绕,其中包括所有实用值的伪矩阵矩阵的特殊点。特殊的表面以及由它们的交叉点产生的可分化点构成了伪热的所有点。特别是,这阐明了对称破裂所涉及的堕落不一定是一个特殊的点。我们还讨论了我们的研究如何与保守量相关,并得出了何时由外部对称性引起的退化易受阈值无伪 - 热性破坏的条件。我们用光子学,凝结物理学和力学的示例来说明我们的结果。
Real eigenvalues of pseudo-Hermitian matrices, such as real matrices and $\mathcal{PT-}$symmetric matrices, frequently split into complex conjugate pairs. This is accompanied by the breaking of certain symmetries of the eigenvectors and, typically, also a drastic change in the behavior of the system. In this paper, we classify the eigenspace of pseudo-Hermitian matrices and show that such symmetry breaking occurs if and only if eigenvalues of opposite kinds collide on the real axis of the complex eigenvalue plane. This enables a classification of the disconnected regions in parameter space where all eigenvalues are real -- which correspond, physically, to the stable phases of the system. These disconnected regions are surrounded by exceptional surfaces which comprise all the real-valued exceptional points of pseudo-Hermitian matrices. The exceptional surfaces, together with the diabolic points created by their intersections, comprise all points of pseudo-Hermiticity breaking. In particular, this clarifies that the degeneracy involved in symmetry breaking is not necessarily an exceptional point. We also discuss how our study relates to conserved quantities and derive the conditions for when degeneracies caused by external symmetries are susceptible to thresholdless pseudo-Hermiticity breaking. We illustrate our results with examples from photonics, condensed matter physics, and mechanics.