论文标题
神经模型的新方法的草图
Sketch of a novel approach to a neural model
论文作者
论文摘要
在本文中,我们以神经处理的水平垂直整合模型的形式阐述了一种新型的神经塑性模型。水平面由通过自适应传输链路连接的神经元网络组成。这符合标准的计算神经科学方法。每个单独的神经元还具有一个垂直维度,内部参数可以转向外部膜表达参数。这些决定神经传播。垂直系统由(a)在膜层处的外部参数组成,分为隔室(刺,boutons)(b)亚膜区域中的内部参数和细胞质中的内部参数,其蛋白质信号网络和(C)(C)用于遗传和表观远期信息的核中的核心参数。在这样的模型中,水平网络中的每个节点(=神经元)都有其自己的内部内存。神经传播和信息存储是系统分开的。这是对突触重量模型的重要概念进步。我们讨论了基于膜的(外部)过滤和用于处理的外部信号的选择。并非每个传输事件都会留下痕迹。我们还说明了神经元内计算策略从细胞内蛋白质信号传导到核作为核心系统。我们想证明单个神经元在信号的计算中具有重要作用。来自记忆的突触重量调整假设得出的许多假设可能无法在真实的大脑中保留。我们将神经元视为一种自我编程的装置,而不是通过持续输入被动确定。我们认为,一种新的神经建模方法将受益于第三波AI。最终,我们努力构建一个灵活的内存系统,该系统会自动处理事实和事件。
In this paper, we lay out a novel model of neuroplasticity in the form of a horizontal-vertical integration model of neural processing. The horizontal plane consists of a network of neurons connected by adaptive transmission links. This fits with standard computational neuroscience approaches. Each individual neuron also has a vertical dimension with internal parameters steering the external membrane-expressed parameters. These determine neural transmission. The vertical system consists of (a) external parameters at the membrane layer, divided into compartments (spines, boutons) (b) internal parameters in the sub-membrane zone and the cytoplasm with its protein signaling network and (c) core parameters in the nucleus for genetic and epigenetic information. In such models, each node (=neuron) in the horizontal network has its own internal memory. Neural transmission and information storage are systematically separated. This is an important conceptual advance over synaptic weight models. We discuss the membrane-based (external) filtering and selection of outside signals for processing. Not every transmission event leaves a trace. We also illustrate the neuron-internal computing strategies from intracellular protein signaling to the nucleus as the core system. We want to show that the individual neuron has an important role in the computation of signals. Many assumptions derived from the synaptic weight adjustment hypothesis of memory may not hold in a real brain. We present the neuron as a self-programming device, rather than passively determined by ongoing input. We believe a new approach to neural modeling will benefit the third wave of AI. Ultimately we strive to build a flexible memory system that processes facts and events automatically.