论文标题

联合罗马空间望远镜和鲁宾天文台合成宽场成像调查

A Joint Roman Space Telescope and Rubin Observatory Synthetic Wide-Field Imaging Survey

论文作者

Troxel, M. A., Lin, C., Park, A., Hirata, C., Mandelbaum, R., Jarvis, M., Choi, A., Givans, J., Higgins, M., Sanchez, B., Yamamoto, M., Awan, H., Chiang, J., Dore, O., Walter, C. W., Zhang, T., Cohen-Tanugi, J., Gawiser, E., Hearin, A., Heitmann, K., Ishak, M., Kovacs, E., Mao, Y. -Y., Wood-Vasey, M., Collaboration, the LSST Dark Energy Science

论文摘要

我们介绍并验证20度$^2 $的重叠合成成像调查,代表了Nancy Grace Roman Space望远镜高纬度成像调查(HLIS)的完整深度,并观察到Vera C. Rubin C. Rubin Perservatory Perservatory遗产的空间和时间(LSST)。总结了两项合成调查,参考了现有的300 ver $^2 $的LSST模拟成像,该成像是Dark Energy Science Collaporation(DESC)数据挑战2(DC2)的一部分。两种合成调查都观察到相同的模拟DESC DC2宇宙。对于综合罗马调查,我们首次模拟完全色彩的图像以及使用飞行探测器从实验室测量中得出的传感器芯片组件的详细物理。对象的光度图特性的模拟成像和产生的像素级测量范围$ \ sim $ \ sim $ 0.3至2.0 $μ$ m。我们还描述了罗马模拟管道的更新,相对于原始DC2模拟对天体物理对象的模拟方式的变化以及由此产生的模拟罗马数据产品。我们使用这些仿真来探索LSST图像中未识别的混合物的相对分数,发现在LSST图像中鉴定出20-30%的对象,$ i $ band尺寸比25更明亮的对象可以识别为罗马图像中的多个对象。这些模拟为在2020年代下半年的地面和空间成像数据集的关节像素级分析技术的开发和验证提供了独特的测试地面,尤其是Roman-LSST分析的情况。

We present and validate 20 deg$^2$ of overlapping synthetic imaging surveys representing the full depth of the Nancy Grace Roman Space Telescope High-Latitude Imaging Survey (HLIS) and five years of observations of the Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST). The two synthetic surveys are summarized, with reference to the existing 300 deg$^2$ of LSST simulated imaging produced as part of Dark Energy Science Collaboration (DESC) Data Challenge 2 (DC2). Both synthetic surveys observe the same simulated DESC DC2 universe. For the synthetic Roman survey, we simulate for the first time fully chromatic images along with the detailed physics of the Sensor Chip Assemblies derived from lab measurements using the flight detectors. The simulated imaging and resulting pixel-level measurements of photometric properties of objects span a wavelength range of $\sim$0.3 to 2.0 $μ$m. We also describe updates to the Roman simulation pipeline, changes in how astrophysical objects are simulated relative to the original DC2 simulations, and the resulting simulated Roman data products. We use these simulations to explore the relative fraction of unrecognized blends in LSST images, finding that 20-30% of objects identified in LSST images with $i$-band magnitudes brighter than 25 can be identified as multiple objects in Roman images. These simulations provide a unique testing ground for the development and validation of joint pixel-level analysis techniques of ground- and space-based imaging data sets in the second half of the 2020s -- in particular the case of joint Roman--LSST analyses.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源