论文标题

多次任务中残留自相关的来源fMRI和有效缓解的策略

Sources of residual autocorrelation in multiband task fMRI and strategies for effective mitigation

论文作者

Parlak, Fatma, Pham, Damon D., Spencer, Daniel A., Welsh, Robert C., Mejia, Amanda F.

论文摘要

在fMRI分析中,OLS通常用于估计大脑中任务诱导的激活。由于fMRI残差通常表现出时间自相关,因此在OLS之前进行预击以满足剩余独立性的假设是相当于GL的常见实践。虽然从理论上讲是直接的,但fMRI预先惠特的重大挑战是准确估计大脑每个位置的残留自相关。假设与多个fMRI软件程序中的全球自相关模型可能在特定的特定区域或过度使用的区域,并且无法实现整个大脑的标称误报对照。更快的多次采集需要更复杂的模型来捕获自相关,从而使预先捕获更加困难。由于对主题级分析的趋势的趋势,这些问题现在变得越来越关键,在这种分析中,惠特的影响要比小组平均分析更大。在本文中,我们首先彻底检查了多班任务fMRI中残留自相关的来源。我们发现,剩余的自相关在整个皮层中都在空间上变化,并且受任务,采集方法,建模选择和个体差异的影响。其次,我们评估了不同基于AR的预倍化策略有效减轻自相关并控制误报的能力。我们发现,允许晶格过滤器在空间上变化是成功预惠性的最重要因素,甚至比增加AR模型顺序更重要。为了克服与空间可变预惠性相关的计算挑战,我们基于并行化和快速的C ++后端代码开发了一个计算有效的R实现。此实现包含在开源R软件包Bayesfmri中。

In task fMRI analysis, OLS is typically used to estimate task-induced activation in the brain. Since task fMRI residuals often exhibit temporal autocorrelation, it is common practice to perform prewhitening prior to OLS to satisfy the assumption of residual independence, equivalent to GLS. While theoretically straightforward, a major challenge in prewhitening in fMRI is accurately estimating the residual autocorrelation at each location of the brain. Assuming a global autocorrelation model, as in several fMRI software programs, may under- or over-whiten particular regions and fail to achieve nominal false positive control across the brain. Faster multiband acquisitions require more sophisticated models to capture autocorrelation, making prewhitening more difficult. These issues are becoming more critical now because of a trend towards subject-level analysis, where prewhitening has a greater impact than in group-average analyses. In this article, we first thoroughly examine the sources of residual autocorrelation in multiband task fMRI. We find that residual autocorrelation varies spatially throughout the cortex and is affected by the task, the acquisition method, modeling choices, and individual differences. Second, we evaluate the ability of different AR-based prewhitening strategies to effectively mitigate autocorrelation and control false positives. We find that allowing the prewhitening filter to vary spatially is the most important factor for successful prewhitening, even more so than increasing AR model order. To overcome the computational challenge associated with spatially variable prewhitening, we developed a computationally efficient R implementation based on parallelization and fast C++ backend code. This implementation is included in the open source R package BayesfMRI.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源