论文标题

Sicret:超新星IA宇宙学具有截短的边际神经比估计

SICRET: Supernova Ia Cosmology with truncated marginal neural Ratio EsTimation

论文作者

Karchev, Konstantin, Trotta, Roberto, Weniger, Christoph

论文摘要

IA型超新星(SNAE IA)是可追踪宇宙扩展历史的标准蜡烛,对限制宇宙学参数(尤其是暗能量)有助于。基于最先进的可能性分析的规模较差,对未来的大型数据集,仅限于简化的概率描述,并且必须显式地对高维潜在后部进行采样,以推断出少数感兴趣的参数,从而使其效率低下。 另一方面,无边缘可能性的推断是基于数据的正向模拟,因此可以完全解释复杂的红移不确定性,非SN IA源的污染,选择效果和现实的仪器模型。所有潜在参数,包括仪器和调查相关的参数,每个对象和人口级特性,都隐含地边缘化,而感兴趣的宇宙学参数则直接推断出来。 作为概念的证明,我们将截短的边际神经比率估计(TMNRE)(TMNRE)(TMNRE)(一种无边际可能性推断的形式)应用于巴哈马,巴哈马是盐参数的贝叶斯分层模型。我们验证TMNRE会产生宇宙学参数的无偏和精确的后代。通过最少的额外努力,我们训练网络同时推断超新星的O(100 000)潜在参数(例如,绝对亮度)。此外,我们描述并应用了一种利用推断的局部摊销的程序,将近似贝叶斯后代转换为具有确切覆盖范围的常见置信区。最后,我们讨论了通过使用无似然推理框架(例如选择效果和非IA污染)来启用模型的计划改进。

Type Ia supernovae (SNae Ia), standardisable candles that allow tracing the expansion history of the Universe, are instrumental in constraining cosmological parameters, particularly dark energy. State-of-the-art likelihood-based analyses scale poorly to future large datasets, are limited to simplified probabilistic descriptions, and must explicitly sample a high-dimensional latent posterior to infer the few parameters of interest, which makes them inefficient. Marginal likelihood-free inference, on the other hand, is based on forward simulations of data, and thus can fully account for complicated redshift uncertainties, contamination from non-SN Ia sources, selection effects, and a realistic instrumental model. All latent parameters, including instrumental and survey-related ones, per-object and population-level properties, are implicitly marginalised, while the cosmological parameters of interest are inferred directly. As a proof of concept, we apply truncated marginal neural ratio estimation (TMNRE), a form of marginal likelihood-free inference, to BAHAMAS, a Bayesian hierarchical model for SALT parameters. We verify that TMNRE produces unbiased and precise posteriors for cosmological parameters from up to 100 000 SNae Ia. With minimal additional effort, we train a network to infer simultaneously the O(100 000) latent parameters of the supernovae (e.g. absolute brightnesses). In addition, we describe and apply a procedure that utilises local amortisation of the inference to convert the approximate Bayesian posteriors into frequentist confidence regions with exact coverage. Finally, we discuss the planned improvements to the model that are enabled by using a likelihood-free inference framework, like selection effects and non-Ia contamination.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源