论文标题
使用自然语言处理的策略培训进行策略培训的自动保真度评估
Automated Fidelity Assessment for Strategy Training in Inpatient Rehabilitation using Natural Language Processing
论文作者
论文摘要
策略培训是一种多学科的康复方法,它教授中风后认知障碍者的残疾技能。与传统的康复方法相比,在随机,对照临床试验中已显示策略培训是促进独立性的更可行和有效的干预措施。标准化的保真度评估用于通过检查康复视频记录中的指导和定向口头提示来衡量治疗原则的依从性。尽管用于检测指导和定向的口头提示的忠诚度评估对于单一站点研究是有效且可行的,但在大型的多站点务实的务实试验中,它可能会变成劳动力密集,耗时且昂贵。为了应对广泛的战略培训实施的这一挑战,我们利用自然语言处理(NLP)技术来自动化策略培训保真度评估,即自动从康复会议视频记录中自动识别有指导和指导的口头提示。我们开发了一种基于规则的NLP算法,一个长期术语存储器(LSTM)模型以及该任务的变压器(BERT)模型的双向编码器表示。 BERT模型以0.8075的F1得分实现了最佳性能。该BERT模型已在从单独的主要区域卫生系统中收集的外部验证数据集上进行了验证,并获得了0.8259的F1分数,这表明BERT模型可以很好地推广。这项研究的发现在心理学和康复干预研究和实践方面具有广泛的希望。
Strategy training is a multidisciplinary rehabilitation approach that teaches skills to reduce disability among those with cognitive impairments following a stroke. Strategy training has been shown in randomized, controlled clinical trials to be a more feasible and efficacious intervention for promoting independence than traditional rehabilitation approaches. A standardized fidelity assessment is used to measure adherence to treatment principles by examining guided and directed verbal cues in video recordings of rehabilitation sessions. Although the fidelity assessment for detecting guided and directed verbal cues is valid and feasible for single-site studies, it can become labor intensive, time consuming, and expensive in large, multi-site pragmatic trials. To address this challenge to widespread strategy training implementation, we leveraged natural language processing (NLP) techniques to automate the strategy training fidelity assessment, i.e., to automatically identify guided and directed verbal cues from video recordings of rehabilitation sessions. We developed a rule-based NLP algorithm, a long-short term memory (LSTM) model, and a bidirectional encoder representation from transformers (BERT) model for this task. The best performance was achieved by the BERT model with a 0.8075 F1-score. This BERT model was verified on an external validation dataset collected from a separate major regional health system and achieved an F1 score of 0.8259, which shows that the BERT model generalizes well. The findings from this study hold widespread promise in psychology and rehabilitation intervention research and practice.