论文标题
关于语言聚类:一种非参数统计方法
On Language Clustering: A Non-parametric Statistical Approach
论文作者
论文摘要
旨在巴氏杀菌和量化特定现象的任何方法都必须包括使用强大的统计方法进行数据分析。考虑到这一点,这项研究的目的是介绍非参数非均匀数据框架中可能采用的统计方法,并检查其在自然语言处理和语言集群领域的应用。此外,本文讨论了语言数据挖掘和处理中非参数方法的许多用途。数据深度思想允许在任何维度上进行中心排序,从而导致新的非参数多元统计分析,该分析不需要任何分布假设。层次结构的概念用于历史语言分类和结构化,其目的是使用相同的前提将语言组织和聚集到亚家族中。在这方面,当前的研究提出了一种基于通过各种语言的单词类型结构产生的非参数方法的语言家族结构的新方法,然后将其转换为使用MDS的笛卡尔框架。基于统计深度的体系结构允许使用基于数据深度的方法来进行鲁棒的离群检测,这对于理解各种边界语言的分类非常有用,并允许对现有分类系统的重新评估。其他基于深度的方法也适用于无监督和监督聚类等过程。因此,本文概述了可以在非参数框架中应用于非均匀语言分类系统的过程。
Any approach aimed at pasteurizing and quantifying a particular phenomenon must include the use of robust statistical methodologies for data analysis. With this in mind, the purpose of this study is to present statistical approaches that may be employed in nonparametric nonhomogeneous data frameworks, as well as to examine their application in the field of natural language processing and language clustering. Furthermore, this paper discusses the many uses of nonparametric approaches in linguistic data mining and processing. The data depth idea allows for the centre-outward ordering of points in any dimension, resulting in a new nonparametric multivariate statistical analysis that does not require any distributional assumptions. The concept of hierarchy is used in historical language categorisation and structuring, and it aims to organise and cluster languages into subfamilies using the same premise. In this regard, the current study presents a novel approach to language family structuring based on non-parametric approaches produced from a typological structure of words in various languages, which is then converted into a Cartesian framework using MDS. This statistical-depth-based architecture allows for the use of data-depth-based methodologies for robust outlier detection, which is extremely useful in understanding the categorization of diverse borderline languages and allows for the re-evaluation of existing classification systems. Other depth-based approaches are also applied to processes such as unsupervised and supervised clustering. This paper therefore provides an overview of procedures that can be applied to nonhomogeneous language classification systems in a nonparametric framework.