论文标题

无线联合学习中的收敛加速度:stackelberg游戏方法

Convergence Acceleration in Wireless Federated Learning: A Stackelberg Game Approach

论文作者

Wang, Kaidi, Ma, Yi, Mashhadi, Mahdi Boloursaz, Foh, Chuan Heng, Tafazolli, Rahim, Ding, Zhi

论文摘要

本文研究了有关在无线网络联合学习(Flow)中联合学习时间的关节优化而产生的问题。我们考虑在能量限制下选择参与设备的标准和协议,并推导其对设备选择的影响。为了提高培训效率,信息年龄(AOI)使飞行能够评估参与者之间梯度更新的新鲜度。为了加快融合的速度,我们共同研究了基于Stackelberg游戏的框架中的全球损失最小化和延迟最小化。具体而言,我们将全球损失最小化为领导者级别的问题,以减少所需的回合的数量,而延迟最小化是减少每个回合时间消耗的追随者级别问题。通过将追随者级别的问题分解为两个子问题,包括资源分配和子渠道分配,我们通过单调优化和匹配理论实现了追随者的最佳策略。在领导者级别,我们得出了收敛速度的上限,随后重新重新重新制定了全球损失最小化的问题,并提出了新的基于更新的设备选择算法。仿真结果表明,根据收敛速率以及对可用子渠道的有效利用,基于AOU的设备选择方案的出色性能。

This paper studies issues that arise with respect to the joint optimization for convergence time in federated learning over wireless networks (FLOWN). We consider the criterion and protocol for selection of participating devices in FLOWN under the energy constraint and derive its impact on device selection. In order to improve the training efficiency, age-of-information (AoI) enables FLOWN to assess the freshness of gradient updates among participants. Aiming to speed up convergence, we jointly investigate global loss minimization and latency minimization in a Stackelberg game based framework. Specifically, we formulate global loss minimization as a leader-level problem for reducing the number of required rounds, and latency minimization as a follower-level problem to reduce time consumption of each round. By decoupling the follower-level problem into two sub-problems, including resource allocation and sub-channel assignment, we achieve an optimal strategy of the follower through monotonic optimization and matching theory. At the leader-level, we derive an upper bound of convergence rate and subsequently reformulate the global loss minimization problem and propose a new age-of-update (AoU) based device selection algorithm. Simulation results indicate the superior performance of the proposed AoU based device selection scheme in terms of the convergence rate, as well as efficient utilization of available sub-channels.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源