论文标题

Plastil:塑料和稳定的无内存课程学习

PlaStIL: Plastic and Stable Memory-Free Class-Incremental Learning

论文作者

Petit, Grégoire, Popescu, Adrian, Belouadah, Eden, Picard, David, Delezoide, Bertrand

论文摘要

课堂学习中需要可塑性和稳定性,以便从新数据中学习,同时保留过去的知识。由于灾难性的遗忘,当没有内存缓冲区可用时,在这两个属性之间找到妥协尤其具有挑战性。主流方法需要存储两个深层模型,因为它们使用以前的增量状态的知识蒸馏来整合新类。我们提出了一种具有相似数量参数但分配不同的方法,以便在塑性和稳定性之间找到更好的平衡。遵循已经通过基于转移的增量方法部署的方法,我们在初始状态之后冻结了功能提取器。最古老的增量状态的类对这种冷冻提取器进行训练,以确保稳定性。使用部分微调模型预测最近的类别以引入可塑性。我们提出的可塑性层可以将其纳入任何用于无示例性增量学习的基于转移的方法,并将其应用于两种此类方法。评估是使用三个大型数据集进行的。结果表明,与现有方法相比,所有测试的配置中均获得性能提高。

Plasticity and stability are needed in class-incremental learning in order to learn from new data while preserving past knowledge. Due to catastrophic forgetting, finding a compromise between these two properties is particularly challenging when no memory buffer is available. Mainstream methods need to store two deep models since they integrate new classes using fine-tuning with knowledge distillation from the previous incremental state. We propose a method which has similar number of parameters but distributes them differently in order to find a better balance between plasticity and stability. Following an approach already deployed by transfer-based incremental methods, we freeze the feature extractor after the initial state. Classes in the oldest incremental states are trained with this frozen extractor to ensure stability. Recent classes are predicted using partially fine-tuned models in order to introduce plasticity. Our proposed plasticity layer can be incorporated to any transfer-based method designed for exemplar-free incremental learning, and we apply it to two such methods. Evaluation is done with three large-scale datasets. Results show that performance gains are obtained in all tested configurations compared to existing methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源