论文标题

树木的序列和更高阶的重新归一化组方程

Sequences of Trees and Higher-Order Renormalization Group Equations

论文作者

Dugan, William T., Foissy, Loïc, Yeats, Karen

论文摘要

我们定义了高阶重新归一化组方程的概念,并研究一系列树木何时满足这种方程。从最强的意义上讲,在应用任何选择Feynman规则时,树木的顺序满足了$ k $ th订单的重新归一化组方程,从而使绿色功能满足满足$ k $ th订单订单重新归一化组方程,我们表征了所有此类树的序列。我们还对树木序列进行了一些评论,这些序列需要特殊的Feynman规则,以满足更高阶段的重新归一化组方程。

We define a notion of higher order renormalization group equation and investigate when a sequence of trees satisfies such an equation. In the strongest sense, the sequence of trees satisfies a $k$th order renormalization group equation when applying any choice of Feynman rules results in a Green function satisfying a $k$th order renormalization group equation, and we characterize all such sequences of trees. We also make some comments on sequences of trees which require special choices of Feynman rules in order to satisfy a higher order renormalization group equation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源