论文标题

$ l^\ infty $ a-priori估计值$ p $ - laplacian方程,具有carathéodory非线性

$L^\infty$ a-priori estimates for subcritical $p$-laplacian equations with a Carathéodory nonlinearity

论文作者

Pardo, Rosa

论文摘要

我们提出了新的$ l^\ infty $ a先验估计,以估计有界域中一类宽类$ p $ laplacian方程的弱解决方案。在解决方案的迹象上没有假设,都不需要两个非线性。此方法基于椭圆规律性的$ p $ -laplacian与Gagliardo-Nirenberg或Caffarelli-Kohn-Nirenberg插值不平等相结合。 让我们考虑一个quasilinear边界价值问题$-Δ_Pu = f(x,u),$ω,$ $ω,带有dirichlet边界条件的$,其中$ω\ subset \ subset \ mathbb {r}^n $,带有$ p <n,$是有界的平稳域严格凸出,$ $ f $是$ f $carathéod的carathéodedecarathéodorycarathéodory。我们提供了$ l^\ infty $ a的弱解决方案的先验估计,就其$ l^{p^*} $ - norm而言,其中$ p^*= \ frac {np} {n-p} {n-p} \ $是关键的sobolev endent。 通过亚临界非线性,我们的意思是,例如,$ | f(x,s)| \ le | x |^{ - μ} \,\,\ tilde {f}(s),$ where $μ\ in(0,p),$和$ \ tilde,$&\ tilde {f}(f}(f}(s)/| s) \ infty $,这里$ p^*_μ:= \ frac {p(n-μ)} {n-p} $是关键的sobolev-hardy指数。我们的非线性包括非电力非线性。 特别是我们证明,当$ f(x,s)= | x |^{ - μ} \,\ frac {| s | s |^{p^*_μ-μ-2} s} {\ big [\ big [\ log(e+| s |) $ c_ \ varepsilon> 0 $使得对于任何解决方案$ u \在h^1_0(ω)$中,以下内容保留$$ \ big [\ log \ big(e+\ | U \ | | _ {\ infty} \ big)\ big] \ big] \ big(1+ \ | U \ | _ {p^*} \ big)^{\,(p^*_μ-p)(1+ \ varepsilon)} \,,$ $,其中$ c_ \ varepsilon $独立于解决方案$ u $。

We present new $L^\infty$ a priori estimates for weak solutions of a wide class of subcritical $p$-laplacian equations in bounded domains. No hypotheses on the sign of the solutions, neither of the non-linearities are required. This method is based in elliptic regularity for the $p$-laplacian combined either with Gagliardo-Nirenberg or Caffarelli-Kohn-Nirenberg interpolation inequalities. Let us consider a quasilinear boundary value problem $ -Δ_p u= f(x,u),$ in $Ω,$ with Dirichlet boundary conditions, where $Ω\subset \mathbb{R}^N $, with $p<N,$ is a bounded smooth domain strictly convex, and $f$ is a subcritical Carathéodory non-linearity. We provide $L^\infty$ a priori estimates for weak solutions, in terms of their $L^{p^*}$-norm, where $p^*= \frac{Np}{N-p}\ $ is the critical Sobolev exponent. By a subcritical non-linearity we mean, for instance, $|f(x,s)|\le |x|^{-μ}\, \tilde{f}(s),$ where $μ\in(0,p),$ and $\tilde{f}(s)/|s|^{p_μ^*-1}\to 0$ as $|s|\to \infty$, here $p^*_μ:=\frac{p(N-μ)}{N-p}$ is the critical Sobolev-Hardy exponent. Our non-linearities includes non-power non-linearities. In particular we prove that when $f(x,s)=|x|^{-μ}\,\frac{|s|^{p^*_μ-2}s}{\big[\log(e+|s|)\big]^α}\,,$ with $μ\in[1,p),$ then, for any $\varepsilon>0$ there exists a constant $C_\varepsilon>0$ such that for any solution $u\in H^1_0(Ω)$, the following holds $$ \Big[\log\big(e+\|u\|_{\infty}\big)\Big]^α\le C_\varepsilon \, \Big(1+\|u\|_{p^*}\Big)^{\, (p^*_μ-p)(1+\varepsilon)}\, , $$ where $C_\varepsilon$ is independent of the solution $u$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源