论文标题

使用时域模拟量子模拟预测分子振动光谱

Predicting molecular vibronic spectra using time-domain analog quantum simulation

论文作者

MacDonell, Ryan J., Navickas, Tomas, Wohlers-Reichel, Tim F., Valahu, Christophe H., Rao, Arjun D., Millican, Maverick J., Currington, Michael A., Biercuk, Michael J., Tan, Ting Rei, Hempel, Cornelius, Kassal, Ivan

论文摘要

光谱法是分子世界中最准确的探针之一。然而,由于电子自由度和核自由度之间存在纠缠,因此准确地预测分子光谱在计算上很难。尽管量子计算机有望降低这种计算成本,但现有的量子方法依赖于组合来自各个本征状信号的信号,这种方法很难扩展,因为特征态的数量随着分子大小而成倍增长。在这里,我们通过在时域中进行模拟,引入了一种分子光谱的可扩展模拟量子模拟的方法。我们的方法比以前的方法可以治疗更复杂的分子模型,需要更少的近似值,并且可以扩展到开放的量子系统,而开放的量子系统则最少。我们提出了将分子光谱的时间域模拟的基本问题直接映射到被困的离子量子模拟器中可用的自由度和控制场的程度。我们在实验上展示了我们在捕获的离子设备上的算法,从而利用了固有的电子和运动自由度,显示了SO $ _2 $的单模振动光电谱频谱的出色定量一致性。

Spectroscopy is one of the most accurate probes of the molecular world. However, predicting molecular spectra accurately is computationally difficult because of the presence of entanglement between electronic and nuclear degrees of freedom. Although quantum computers promise to reduce this computational cost, existing quantum approaches rely on combining signals from individual eigenstates, an approach that is difficult to scale because the number of eigenstates grows exponentially with molecule size. Here, we introduce a method for scalable analog quantum simulation of molecular spectroscopy, by performing simulations in the time domain. Our approach can treat more complicated molecular models than previous ones, requires fewer approximations, and can be extended to open quantum systems with minimal overhead. We present a direct mapping of the underlying problem of time-domain simulation of molecular spectra to the degrees of freedom and control fields available in a trapped-ion quantum simulator. We experimentally demonstrate our algorithm on a trapped-ion device, exploiting both intrinsic electronic and motional degrees of freedom, showing excellent quantitative agreement for a single-mode vibronic photoelectron spectrum of SO$_2$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源