论文标题

TAC2结构:仅通过多次触摸对象表面重建

Tac2Structure: Object Surface Reconstruction Only through Multi Times Touch

论文作者

Lu, Junyuan, Wan, Zeyu, Zhang, Yu

论文摘要

受到人类在不依赖视觉的情况下感知陌生物体表面质地的能力的启发,触摸感可以在探索环境的机器人中起着至关重要的作用,尤其是在很难应用视觉或不可避免的视觉的场景中。现有的触觉表面重建方法依赖外部传感器或具有强大的先验假设,使操作变得复杂并限制了其应用程序方案。本文通过多种触觉测量TAC2结构提出了一个低饮用表面重建的框架。与现有算法相比,该提出的方法仅使用基于新的触觉传感器而不依赖外部设备。为了使重建精度很容易受到接触压力的困难,我们提出了一种校正算法以使其适应它。所提出的方法还减少了在整体对象表面重建过程中易于发生的累积错误。多帧触觉测量可以通过共同使用Point Cloud登记算法,基于深度学习的环闭合检测算法和构图图优化算法来准确地重建对象表面。实验验证TAC2结构可以在重建物体表面时达到毫米级的精度,从而为机器人提供准确的触觉信息以感知周围环境。

Inspired by humans' ability to perceive the surface texture of unfamiliar objects without relying on vision, the sense of touch can play a crucial role in robots exploring the environment, particularly in scenes where vision is difficult to apply, or occlusion is inevitable. Existing tactile surface reconstruction methods rely on external sensors or have strong prior assumptions, making the operation complex and limiting their application scenarios. This paper presents a framework for low-drift surface reconstruction through multiple tactile measurements, Tac2Structure. Compared with existing algorithms, the proposed method uses only a new vision-based tactile sensor without relying on external devices. Aiming at the difficulty that reconstruction accuracy is easily affected by the pressure at contact, we propose a correction algorithm to adapt it. The proposed method also reduces the accumulative errors that occur easily during global object surface reconstruction. Multi-frame tactile measurements can accurately reconstruct object surfaces by jointly using the point cloud registration algorithm, loop-closure detection algorithm based on deep learning, and pose graph optimization algorithm. Experiments verify that Tac2Structure can achieve millimeter-level accuracy in reconstructing the surface of objects, providing accurate tactile information for the robot to perceive the surrounding environment.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源