论文标题

关于夏威夷同源组织

On Hawaiian homology groups

论文作者

Torabi, Hamid, Mirebrahimi, Hanieh, Babaee, Ameneh

论文摘要

在本文中,我们介绍了一种同源性,我们称其为夏威夷同源性研究和对尖端的拓扑空间进行分类。夏威夷同源组织具有夏威夷群体的优势。此外,第一个夏威夷同源组是第一个用于路径连接和局部路径连接拓扑空间的夏威夷群的阿贝利亚化。由于夏威夷同源性具有具体的元素和Abelian结构,因此其计算更常规。因此,我们使用夏威夷同源群体比较夏威夷群体,然后获得有关某些野生拓扑空间的夏威夷群体的一些信息。

In this paper, we introduce a kind of homology which we call Hawaiian homology to study and classify pointed topological spaces. The Hawaiian homology group has advantages of Hawaiian groups. Moreover, the first Hawaiian homology group is isomorphic to the abelianization of the first Hawaiian group for path-connected and locally path-connected topological spaces. Since Hawaiian homology has concrete elements and abelian structure, its calculations are more routine. Thus we use Hawaiian homology groups to compare Hawaiian groups, and then we obtain some information about Hawaiian groups of some wild topological spaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源