论文标题
关于同质品种
Codimension one foliations on homogeneous varieties
论文作者
论文摘要
本文的目的是研究关于理性均匀空间的一个编构叶,重点是grassmannians和cominuscule空间的低度叶子的模量空间。我们表明,使用模棱两可的技术,我们表明(普通的,矫正,符号,符号,符合性的)线条,某些纺纱品品种,一些拉格朗日格拉曼尼亚人,开贝飞机($ e_6 $ - varietio)和自由志出了($ e_7 $ - $ - $ - $ -VARISITION)的差异差异。我们还提供了一些证据,表明这些结果可以扩展到这些情况之外。
The aim of this paper is to study codimension one foliations on rational homogeneous spaces, with a focus on the moduli space of foliations of low degree on Grassmannians and cominuscule spaces. Using equivariant techniques, we show that codimension one degree zero foliations on (ordinary, orthogonal, symplectic) Grassmannians of lines, some spinor varieties, some Lagrangian Grassmannians, the Cayley plane (an $E_6$-variety) and the Freudenthal variety (an $E_7$-variety) are identified with restrictions of foliations on the ambient projective space. We also provide some evidence that such results can be extended beyond these cases.