论文标题
指南针:用于广义手术过程建模的正式框架和汇总数据集
COMPASS: A Formal Framework and Aggregate Dataset for Generalized Surgical Procedure Modeling
论文作者
论文摘要
目的:我们提出了一个正式的框架,用于使用一组统一的运动原语(MP)建模和分割微创手术任务,以实现更客观的标签和不同数据集的聚合。 方法:我们将干lab手术任务建模为有限状态机器,代表了MPS作为基本手术动作的执行如何导致手术环境的变化,这表征了手术环境中工具和对象之间的物理相互作用。我们开发了基于视频数据和将上下文自动转换为MP标签的手术上下文标记的方法。然后,我们使用框架来创建上下文和运动原始骨料外科手术集(Compass),包括来自三个公共可用数据集(拼图,桌子和Rosma)的六项干燥LAB手术任务,并带有运动数据,视频数据以及上下文和上下文标签。 结果:我们的上下文标签方法达到了众包的共识标签与专家外科医生之间的几乎完美的一致性。将任务分割为MPS会导致创建指南针数据集,该数据集几乎将建模和分析的数据量增加了三倍,并可以为左右工具生成单独的成绩单。 结论:提出的框架会根据上下文和细粒度的MPS对手术数据进行高质量的标记。使用MPS对外科手术任务进行建模可以使不同数据集的汇总以及对左手和右手的单独分析进行双层协调评估。我们的正式框架和汇总数据集可以支持开发可解释和多范围的模型,以改善手术过程分析,技能评估,错误检测和自治。
Purpose: We propose a formal framework for the modeling and segmentation of minimally-invasive surgical tasks using a unified set of motion primitives (MPs) to enable more objective labeling and the aggregation of different datasets. Methods: We model dry-lab surgical tasks as finite state machines, representing how the execution of MPs as the basic surgical actions results in the change of surgical context, which characterizes the physical interactions among tools and objects in the surgical environment. We develop methods for labeling surgical context based on video data and for automatic translation of context to MP labels. We then use our framework to create the COntext and Motion Primitive Aggregate Surgical Set (COMPASS), including six dry-lab surgical tasks from three publicly-available datasets (JIGSAWS, DESK, and ROSMA), with kinematic and video data and context and MP labels. Results: Our context labeling method achieves near-perfect agreement between consensus labels from crowd-sourcing and expert surgeons. Segmentation of tasks to MPs results in the creation of the COMPASS dataset that nearly triples the amount of data for modeling and analysis and enables the generation of separate transcripts for the left and right tools. Conclusion: The proposed framework results in high quality labeling of surgical data based on context and fine-grained MPs. Modeling surgical tasks with MPs enables the aggregation of different datasets and the separate analysis of left and right hands for bimanual coordination assessment. Our formal framework and aggregate dataset can support the development of explainable and multi-granularity models for improved surgical process analysis, skill assessment, error detection, and autonomy.