论文标题
与基于注意的Bilstm网络中的无赠款Noma中的联合用户和数据检测
Joint User and Data Detection in Grant-Free NOMA with Attention-based BiLSTM Network
论文作者
论文摘要
我们考虑无上行赠款非正交多访问(NOMA)中的多用户检测(MUD)问题,其中访问点必须确定活动互联网设备(IoT)设备的总数和正确身份并解码其传输数据。我们假设IoT设备使用复杂的扩散序列并按照爆发 - 距离模型以随机访问的方式传输信息,其中某些IoT设备在多个相邻的时间插槽中以高概率传输数据,而另一些物联网设备在帧中仅传输一次。利用时间相关性,我们提出了一个基于注意力的双向长期记忆(BILSTM)网络来解决泥浆问题。 Bilstm网络使用向前和反向通过LSTM创建设备激活历史记录的模式,而注意机制为设备激活点提供了基本背景。通过这样做,遵循了层次途径,以在无赠款方案中检测主动设备。然后,通过利用复杂的扩散序列,对估计的活动设备进行了盲数据检测。所提出的框架不需要对设备稀疏水平和执行泥浆的通道的事先了解。结果表明,与现有的基准方案相比,提议的网络的性能更好。
We consider the multi-user detection (MUD) problem in uplink grant-free non-orthogonal multiple access (NOMA), where the access point has to identify the total number and correct identity of the active Internet of Things (IoT) devices and decode their transmitted data. We assume that IoT devices use complex spreading sequences and transmit information in a random-access manner following the burst-sparsity model, where some IoT devices transmit their data in multiple adjacent time slots with a high probability, while others transmit only once during a frame. Exploiting the temporal correlation, we propose an attention-based bidirectional long short-term memory (BiLSTM) network to solve the MUD problem. The BiLSTM network creates a pattern of the device activation history using forward and reverse pass LSTMs, whereas the attention mechanism provides essential context to the device activation points. By doing so, a hierarchical pathway is followed for detecting active devices in a grant-free scenario. Then, by utilising the complex spreading sequences, blind data detection for the estimated active devices is performed. The proposed framework does not require prior knowledge of device sparsity levels and channels for performing MUD. The results show that the proposed network achieves better performance compared to existing benchmark schemes.