论文标题

连续型贝叶斯NASH平衡的分布式算法

Distributed Algorithm for Continuous-type Bayesian Nash Equilibrium in Subnetwork Zero-sum Games

论文作者

Zhang, Hanzheng, Chen, Guanpu, Hong, Yiguang

论文摘要

在本文中,我们考虑了子网零和游戏中寻求问题的连续型贝叶斯纳什平衡(BNE),这是确定性子网络零-SUM游戏和离散型贝叶斯零和游戏的概括。在这种连续类型的模型中,由于可行的策略集由无限维功能组成,并且不是紧凑,因此很难在非紧凑型集合中寻求BNE并在网络交流中传达这种复杂的策略。为此,我们设计了两个步骤来克服上述瓶颈。一个是一个离散的步骤,在该步骤中,我们将连续类型离散,并证明离散模型的BNE是具有明确误差绑定的连续模型的近似BNE。另一个是通信步骤,我们采用具有设计的稀疏规则的新型压缩方案,并证明代理可以通过压缩通信获得公正的估计。基于上述两个步骤,我们提出了一种分布式通信效率算法,以实践近似BNE,并进一步提供了一个明显的错误,并且$ O(\ ln T/\ sqrt {t})$收敛率。

In this paper, we consider a continuous-type Bayesian Nash equilibrium (BNE) seeking problem in subnetwork zero-sum games, which is a generalization of deterministic subnetwork zero-sum games and discrete-type Bayesian zero-sum games. In this continuous-type model, because the feasible strategy set is composed of infinite-dimensional functions and is not compact, it is hard to seek a BNE in a non-compact set and convey such complex strategies in network communication. To this end, we design two steps to overcome the above bottleneck. One is a discretization step, where we discretize continuous types and prove that the BNE of the discretized model is an approximate BNE of the continuous model with an explicit error bound. The other one is a communication step, where we adopt a novel compression scheme with a designed sparsification rule and prove that agents can obtain unbiased estimations through compressed communication. Based on the above two steps, we propose a distributed communication-efficient algorithm to practicably seek an approximate BNE, and further provide an explicit error bound and an $O(\ln T/\sqrt{T})$ convergence rate.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源