论文标题

Isimloc:具有模拟图像的以前看不见的环境的视觉全局本地化

iSimLoc: Visual Global Localization for Previously Unseen Environments with Simulated Images

论文作者

Yin, Peng, Cisneros, Ivan, Zhang, Ji, Choset, Howie, Scherer, Sebastian

论文摘要

视觉摄像头是超越视觉线(B-VLOS)无人机操作的有吸引力的设备,因为它们的尺寸,重量,功率和成本较低,并且可以为GPS失败提供多余的方式。但是,最新的视觉定位算法无法匹配由于照明或观点而导致的外观明显不同的视觉数据。本文介绍了Isimloc,这是一种条件/观点一致的分层全局重新定位方法。 Isimloc的位置功能可用于在不断变化的外观和观点下搜索目标图像。此外,我们的分层全局重新定位模块以粗到精细的方式完善,允许Isimloc执行快速准确的估计。我们在一个数据集上评估了我们的方法,其中具有外观变化和一个数据集,该数据集的重点是在复杂的环境中长时间进行大规模匹配。在我们的两个数据集中,Isimloc在1.5s推导时间的成功检索率达到88.7 \%和83.8 \%,而使用下一个最佳方法,为45.8%和39.7%。这些结果证明了在各种环境中的强大定位。

The visual camera is an attractive device in beyond visual line of sight (B-VLOS) drone operation, since they are low in size, weight, power, and cost, and can provide redundant modality to GPS failures. However, state-of-the-art visual localization algorithms are unable to match visual data that have a significantly different appearance due to illuminations or viewpoints. This paper presents iSimLoc, a condition/viewpoint consistent hierarchical global re-localization approach. The place features of iSimLoc can be utilized to search target images under changing appearances and viewpoints. Additionally, our hierarchical global re-localization module refines in a coarse-to-fine manner, allowing iSimLoc to perform a fast and accurate estimation. We evaluate our method on one dataset with appearance variations and one dataset that focuses on demonstrating large-scale matching over a long flight in complicated environments. On our two datasets, iSimLoc achieves 88.7\% and 83.8\% successful retrieval rates with 1.5s inferencing time, compared to 45.8% and 39.7% using the next best method. These results demonstrate robust localization in a range of environments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源