论文标题
将intstanton映射到时空
Mapping an Instanton to Spacetime
论文作者
论文摘要
从复杂的Lorentz组的Lie代数映射到$ \ Mathfrak {su}(2)(2)\ times \ Mathfrak {su}(2)(2)\ sim \ sim \ Mathfrak {sp}(1)\ times \ times \ Mathfrak {Sp}提出。 coset空间被证明是Instanton的所在地,即优化Yang-Mills功能的曲率形式。提出了参数,以支持对$ sp(n)/sp(1)^n $的概括,以产生$ n $粒子的自洽多体理论,这是通过位于coset空间中的字段相互相互作用的。
A mapping from the Lie algebra of the complexified Lorentz group to the $\mathfrak{su}(2)\times\mathfrak{su}(2) \sim\mathfrak{sp}(1)\times\mathfrak{sp}(1)$ part of the algebra the coset space $Sp(2)/[Sp(1)\times Sp(1)]$ is presented. The coset space is shown to be home to the instanton, the curvature form that optimizes the Yang-Mills functional. Arguments are presented to support the generalization to $Sp(n)/Sp(1)^n$ to yield a self-consistent many-body theory for $n$ particles interacting with one another via fields that reside in the coset space.