论文标题
Facetoponet:使用面部拓扑学习的面部表情识别
FaceTopoNet: Facial Expression Recognition using Face Topology Learning
论文作者
论文摘要
先前的工作表明,使用顺序学习者学习面部不同组成部分的顺序可以在面部表达识别系统的性能中发挥重要作用。我们提出了Facetoponet,这是面部表达识别的端到端深层模型,它能够学习面部有效的树拓扑。然后,我们的模型遍历学习的树以生成序列,然后将其用于形成嵌入以喂养顺序学习者。设计的模型采用一个流进行学习结构,一个流进行学习纹理。结构流着重于面部地标的位置,而纹理流的主要重点是在地标周围的斑块上学习纹理信息。然后,我们通过利用有效的基于注意力的融合策略来融合这两个流的输出。我们对四个大型内部面部表达数据集进行了广泛的实验 - 即AffectNet,FER2013,EXPW和RAF-DB,以及一个实验室控制的数据集(CK+)来评估我们的方法。 Facetoponet在五个数据集中的三个数据集中达到了最新的性能,并在其他两个数据集中获得了竞争结果。我们还执行严格的消融和灵敏度实验,以评估模型中不同组件和参数的影响。最后,我们执行鲁棒性实验,并证明与该地区的其他领先方法相比,Facetoponet在闭塞方面更加健壮。
Prior work has shown that the order in which different components of the face are learned using a sequential learner can play an important role in the performance of facial expression recognition systems. We propose FaceTopoNet, an end-to-end deep model for facial expression recognition, which is capable of learning an effective tree topology of the face. Our model then traverses the learned tree to generate a sequence, which is then used to form an embedding to feed a sequential learner. The devised model adopts one stream for learning structure and one stream for learning texture. The structure stream focuses on the positions of the facial landmarks, while the main focus of the texture stream is on the patches around the landmarks to learn textural information. We then fuse the outputs of the two streams by utilizing an effective attention-based fusion strategy. We perform extensive experiments on four large-scale in-the-wild facial expression datasets - namely AffectNet, FER2013, ExpW, and RAF-DB - and one lab-controlled dataset (CK+) to evaluate our approach. FaceTopoNet achieves state-of-the-art performance on three of the five datasets and obtains competitive results on the other two datasets. We also perform rigorous ablation and sensitivity experiments to evaluate the impact of different components and parameters in our model. Lastly, we perform robustness experiments and demonstrate that FaceTopoNet is more robust against occlusions in comparison to other leading methods in the area.