论文标题

通过代理标签\和通过半监视的微调进行选择的活跃学习

Warm Start Active Learning with Proxy Labels \& Selection via Semi-Supervised Fine-Tuning

论文作者

Nath, Vishwesh, Yang, Dong, Roth, Holger R., Xu, Daguang

论文摘要

接下来要注释的卷是一个挑战性的问题,可以构建用于深度学习的医学成像数据集。解决这个问题的有前途的方法之一是主动学习(AL)。但是,关于Al算法和采集功能最有用的数据集,AL一直很难破解。同样,当要开始的数据零标记时,问题会加剧,首先要标记的问题首先要标记。这就是AL中的冷启动问题。我们为3D图像分割提出了两种新型策略。首先,我们通过提出代理任务,然后利用代理任务产生的不确定性来解决冷启动问题,以对要注释的未标记数据进行排名。其次,我们为每个主动迭代制作了一个两阶段的学习框架,其中未标记的数据在第二阶段也被用作半监督的微调策略。我们展示了我们对从十项全能医学分割的两个著名大型公共数据集进行方法的希望。结果表明,数据和半监督框架的初始选择都显示出几种AL策略的显着改善。

Which volume to annotate next is a challenging problem in building medical imaging datasets for deep learning. One of the promising methods to approach this question is active learning (AL). However, AL has been a hard nut to crack in terms of which AL algorithm and acquisition functions are most useful for which datasets. Also, the problem is exacerbated with which volumes to label first when there is zero labeled data to start with. This is known as the cold start problem in AL. We propose two novel strategies for AL specifically for 3D image segmentation. First, we tackle the cold start problem by proposing a proxy task and then utilizing uncertainty generated from the proxy task to rank the unlabeled data to be annotated. Second, we craft a two-stage learning framework for each active iteration where the unlabeled data is also used in the second stage as a semi-supervised fine-tuning strategy. We show the promise of our approach on two well-known large public datasets from medical segmentation decathlon. The results indicate that the initial selection of data and semi-supervised framework both showed significant improvement for several AL strategies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源