论文标题

基于微管的活性流体中扩展活动应力的时空模式

Spatiotemporal patterning of extensile active stresses in microtubule-based active fluids

论文作者

Lemma, Linnea M., Varghese, Minu, Ross, Tyler D., Thomson, Matt, Baskaran, Aparana, Dogic, Zvonimir

论文摘要

通过消耗棒状成分的运动产生的积极应力会产生混乱的自主流。控制空间和时间上的主动应力是控制大量活性流体本质上混沌动力学的必要先决条件。我们设计了单头运动蛋白分子电动机,表现出光学增强的聚类,从而实现了扩展活动应力的精确且可重复的空间和时间控制。这样的电动机可以在流动状态和静态状态之间快速,可逆的切换。反过来,主动应力的时空模式控制了大型活性流体无处不在的弯曲稳定性的演变,并确定其临界长度依赖性。将光学控制的簇与常规的驱动蛋白电动机相结合,可以一次性从收缩式转变为延长的主动应力。这些结果为有源流体产生的自主流实时控制开辟了道路。

Active stresses, which are collectively generated by the motion of energy-consuming rod-like constituents, generate chaotic autonomous flows. Controlling active stresses in space and time is an essential prerequisite for controlling the intrinsically chaotic dynamics of extensile active fluids. We design single-headed kinesin molecular motors that exhibit optically enhanced clustering, and thus enable precise and repeatable spatial and temporal control of extensile active stresses. Such motors enable rapid, reversible switching between flowing and quiescent states. In turn, spatio-temporal patterning of the active stress controls the evolution of the ubiquitous bend-instability of extensile active fluids and determines its critical length dependence. Combining optically controlled clusters with conventional kinesin motors enables one-time switching from contractile to extensile active stresses. These results open a path towards real-time control of the autonomous flows generated by active fluids.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源