论文标题

量子组的簇性质

Cluster Nature of Quantum Groups

论文作者

Shen, Linhui

论文摘要

我们提出了一个刚性群集模型,以实现量子组$ {\ bf u} _q(\ mathfrak {g})$ for $ \ mathfrak {g} $ a ade的类型。也就是说,我们证明,量子组$ {\ bf u} _q(\ mathfrak {g})$的天然HOPF代数同构。 $ \ Mathcal {O} _Q(\ Mathscr {p} _ {{\ rm g},\ odot})$。通过应用群集代数的量子二元性,我们表明$ {\ bf u} _q(\ mathfrak {g})$允许自然基础$ \ bar {\bfθ} $,其结构系数在$ \ mathbb {N} [q^n} [q^Q^{q^{Q^{Q^{1}}中q^{ - \ frac {1} {2}}} $。基础$ \ bar {\bfθ} $在Lusztig的编织组动作,Dynkin Kutomormormisms和Star Anti Antivolution下满足不变性属性。

We present a rigid cluster model to realize the quantum group ${\bf U}_q(\mathfrak{g})$ for $\mathfrak{g}$ of type ADE. That is, we prove that there is a natural Hopf algebra isomorphism from the quantum group ${\bf U}_q(\mathfrak{g})$ to a quotient algebra of the Weyl group invariants of the Fock-Goncharov quantum cluster algebra $\mathcal{O}_q(\mathscr{P}_{{\rm G},\odot})$. By applying the quantum duality of cluster algebras, we show that ${\bf U}_q(\mathfrak{g})$ admits a natural basis $\bar{\bf Θ}$ whose structural coefficients are in $\mathbb{N}[q^{\frac{1}{2}}, q^{-\frac{1}{2}}]$. The basis $\bar{\bf Θ}$ satisfies an invariance property under Lusztig's braid group action, the Dynkin automorphisms, and the star anti-involution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源