论文标题

来自单价时期的AD Virasoro-Shapiro

AdS Virasoro-Shapiro from single-valued periods

论文作者

Alday, Luis F., Hansen, Tobias, Silva, Joao A.

论文摘要

我们确定了对平坦空间系数的整个$ 1/\sqrtλ$校正,该系数以$ \ mathcal {n} = 4 $ sym Themoly以强耦合时输入ADS Virasoro-Shapiro振幅。 Wilson系数在单值多个Zeta值的环中,如封闭的字符串幅度所期望的,这是令人惊讶的强大的,并为与Wilson系数和OPE数据相关的分散总规则提供了独特的解决方案。相应的OPE数据完全符合并扩展了整合性的结果。 Wilson系数订购$ 1/\SQRTλ$可以求和到一个表达式中,其杆的结构和残基的结构将Virasoro-Shapiro振幅的概括在平面空间中。

We determine the full $1/\sqrtλ$ correction to the flat-space Wilson coefficients which enter the AdS Virasoro-Shapiro amplitude in $\mathcal{N}=4$ SYM theory at strong coupling. The assumption that the Wilson coefficients are in the ring of single-valued multiple zeta values, as expected for closed string amplitudes, is surprisingly powerful and leads to a unique solution to the dispersive sum rules relating Wilson coefficients and OPE data obtained in [1]. The corresponding OPE data fully agrees with and extends the results from integrability. The Wilson coefficients to order $1/\sqrtλ$ can be summed into an expression whose structure of poles and residues generalises that of the Virasoro-Shapiro amplitude in flat space.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源