论文标题
利曼在相位和fock空间中对光子量子电路的优化
Riemannian optimization of photonic quantum circuits in phase and Fock space
论文作者
论文摘要
我们提出了一个框架,以设计和优化由高斯物体(纯和混合的高斯州,高斯单位,高斯通道,高斯测量值)以及非高斯效应,例如光子 - 单位分辨分辨率的测量值组成的框架。在此框架中,我们使用符号组的元素(或特殊情况下的单一或正交组)对高斯对象的相位空间表示形式进行了参数,然后我们使用单个线性复发关系将其转换为Fock表示,从而使用任何高斯对象的fock ampludes recortation递归递归递归。我们还通过通过复发关系来区分相对于相空间参数的Fock振幅的梯度。然后,我们可以在符号组上使用Riemannian优化来优化M模式高斯对象,从而避免了根据基本门对特定实现进行特定实现的需求。这使我们能够“淘汰”同一电路的所有不同门级实现,现在可以在优化完成后选择。当想要回答一般问题时,例如将属性的价值限制在一类状态或转换时,或者当人们想从电路优化步骤中分别担心硬件约束时,这可能特别有用。最后,我们可以通过明确计算出经历高斯转换时的全球阶段变化来使我们的框架可以扩展到可以写入高斯框架的线性组合的非高斯对象。我们在可自由使用的开源库Mrmustard中实现了所有这些方法,在三个示例中使用它们来优化北方岛的216模式干涉仪,以及2-和3型电路(带有FOCK测量值)来产生猫状态和立方相。
We propose a framework to design and optimize generic photonic quantum circuits composed of Gaussian objects (pure and mixed Gaussian states, Gaussian unitaries, Gaussian channels, Gaussian measurements) as well as non-Gaussian effects such as photon-number-resolving measurements. In this framework, we parametrize a phase space representation of Gaussian objects using elements of the symplectic group (or the unitary or orthogonal group in special cases), and then we transform it into the Fock representation using a single linear recurrence relation that computes the Fock amplitudes of any Gaussian object recursively. We also compute the gradient of the Fock amplitudes with respect to phase space parameters by differentiating through the recurrence relation. We can then use Riemannian optimization on the symplectic group to optimize M-mode Gaussian objects, avoiding the need to commit to particular realizations in terms of fundamental gates. This allows us to "mod out" all the different gate-level implementations of the same circuit, which now can be chosen after the optimization has completed. This can be especially useful when looking to answer general questions, such as bounding the value of a property over a class of states or transformations, or when one would like to worry about hardware constraints separately from the circuit optimization step. Finally, we make our framework extendable to non-Gaussian objects that can be written as linear combinations of Gaussian ones, by explicitly computing the change in global phase when states undergo Gaussian transformations. We implemented all of these methods in the freely available open-source library MrMustard, which we use in three examples to optimize the 216-mode interferometer in Borealis, and 2- and 3-modes circuits (with Fock measurements) to produce cat states and cubic phase states.