论文标题

3D中的直线凸壳

Rectilinear Convex Hull of Points in 3D

论文作者

Pérez-Lantero, Pablo, Seara, Carlos, Urrutia, Jorge

论文摘要

令$ p $为$ \ m athbb {r}^3 $的一组$ n $点,让$ rch(p)$为$ p $的直流凸壳。在本文中,我们获得了一个最佳$ O(n \ log n)$ - 时间和$ o(n)$ - 空间算法来计算$ rch(p)$。我们还获得了一个高效的$ O(n \ log^2 n)$ - 时间和$ o(n \ log n)$ - 空间算法,以计算和维护$ p $的直流式壳体的顶点,因为we rowate $ \ \ \ m rathbb r^3 $ a of $ z $ axisis of $ z $ -axis。最后,我们研究了$ \ mathbb {r}^3 $中的直线凸壳的一些属性。

Let $P$ be a set of $n$ points in $\mathbb{R}^3$ in general position, and let $RCH(P)$ be the rectilinear convex hull of $P$. In this paper we obtain an optimal $O(n\log n)$-time and $O(n)$-space algorithm to compute $RCH(P)$. We also obtain an efficient $O(n\log^2 n)$-time and $O(n\log n)$-space algorithm to compute and maintain the set of vertices of the rectilinear convex hull of $P$ as we rotate $\mathbb R^3$ around the $z$-axis. Finally we study some properties of the rectilinear convex hulls of point sets in $\mathbb{R}^3$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源