论文标题

准最佳$ hp $ - 通过深度神经网络预测对奇异性的精致元素改进

Quasi-optimal $hp$-finite element refinements towards singularities via deep neural network prediction

论文作者

Sluzalec, Tomasz, Grzeszczuk, Rafal, Rojas, Sergio, Dzwinel, Witold, Paszynski, Maciej

论文摘要

我们展示了如何构建深度神经网络(DNN)专家,以预测给定计算问题的准最佳$ hp $ - 翻新。主要想法是在执行自适应$ hp $ -finite元素方法($ hp $ -fem)算法的过程中培训DNN专家,并稍后使用它来预测进一步的$ HP $细化。在培训中,我们使用两个网格范式自适应$ HP $ -FEM算法。它采用精细网格为粗网格元素提供最佳的$ hp $改进。我们旨在构建DNN专家,以确定粗网格元素的准最佳$ HP $改进。在训练阶段,我们使用直接求解器获取细网格的溶液,以指导在粗网格元件上的最佳修补。训练后,我们关闭了自适应$ hp $ -FEM算法,并继续按照受过DNN专家培训的DNN专家提出的准优化细化。我们测试了三维五甲虫和二维L形域问题的方法。我们验证数值相对于网格尺寸的收敛性。我们表明,如果我们继续使用经过适当培训的DNN专家进行改进,则可以保留由自适应$ hp $ -FEM提供的指数融合。因此,在本文中,我们表明,从自适应$ hp $ -FEM中可以培训DNN专家的奇异性位置,并继续选择准最佳的$ HP $改进,从而保留该方法的指数融合。

We show how to construct the deep neural network (DNN) expert to predict quasi-optimal $hp$-refinements for a given computational problem. The main idea is to train the DNN expert during executing the self-adaptive $hp$-finite element method ($hp$-FEM) algorithm and use it later to predict further $hp$ refinements. For the training, we use a two-grid paradigm self-adaptive $hp$-FEM algorithm. It employs the fine mesh to provide the optimal $hp$ refinements for coarse mesh elements. We aim to construct the DNN expert to identify quasi-optimal $hp$ refinements of the coarse mesh elements. During the training phase, we use the direct solver to obtain the solution for the fine mesh to guide the optimal refinements over the coarse mesh element. After training, we turn off the self-adaptive $hp$-FEM algorithm and continue with quasi-optimal refinements as proposed by the DNN expert trained. We test our method on three-dimensional Fichera and two-dimensional L-shaped domain problems. We verify the convergence of the numerical accuracy with respect to the mesh size. We show that the exponential convergence delivered by the self-adaptive $hp$-FEM can be preserved if we continue refinements with a properly trained DNN expert. Thus, in this paper, we show that from the self-adaptive $hp$-FEM it is possible to train the DNN expert the location of the singularities, and continue with the selection of the quasi-optimal $hp$ refinements, preserving the exponential convergence of the method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源