论文标题

可观察到多链歧管和较高的courant代数

Observables on multisymplectic manifolds and higher Courant algebroids

论文作者

Miti, Antonio Michele, Zambon, Marco

论文摘要

令$ω$为任意程度的封闭式非分类差异形式。与之相关的是一个$ l _ {\ infty} $ - 可观察的代数,还有$ l _ {\ infty} $ - 较高courant algebroid twist twist $ω$的较高代数的部分。我们的主要结果是存在$ l _ {\ infty} $ - 将前者嵌入后者中。我们为嵌入式显示涉及伯努利号码的明确公式。当$ω$是一种不可或缺的符号形式时,可以通过前后化结构几何地实现嵌入,并且当$ω$是3型的3型时,Rogers在2010年发现了嵌入。此外,在存在同型矩图的情况下,我们显示嵌入与仪表转换相吻合。

Let $ω$ be a closed, non-degenerate differential form of arbitrary degree. Associated to it there are an $L_{\infty}$-algebra of observables, and an $L_{\infty}$-algebra of sections of the higher Courant algebroid twisted by $ω$. Our main result is the existence of an $L_{\infty}$-embedding of the former into the latter. We display explicit formulae for the embedding, involving the Bernoulli numbers. When $ω$ is an integral symplectic form, the embedding can be realized geometrically via the prequantization construction, and when $ω$ is a 3-form the embedding was found by Rogers in 2010. Further, in the presence of homotopy moment maps, we show that the embedding is compatible with gauge transformations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源