论文标题

建筑照片的一天的神经风格转移

Time-of-Day Neural Style Transfer for Architectural Photographs

论文作者

Chen, Yingshu, Vu, Tuan-Anh, Shum, Ka-Chun, Hua, Binh-Son, Yeung, Sai-Kit

论文摘要

建筑摄影是一种摄影类型,专注于在后台捕获前景中具有戏剧性照明的建筑物或结构。受图像到图像翻译方法的成功启发,我们旨在为建筑照片执行风格转移。但是,建筑摄影中的特殊构图对这种类型的照片构成了巨大的挑战。现有的神经风格转移方法将建筑图像视为一个单一的实体,它将产生与原始体系结构的几何特征相匹配并破坏原始建筑的几何特征,从而产生不切实际的照明,错误的颜色演绎以及可视化文物,例如幽灵,外观失真或颜色不匹配。在本文中,我们专门针对建筑摄影的神经风格转移方法。我们的方法解决了两个分支神经网络中建筑照片中前景和背景的组成,该神经网络分别考虑了前景和背景的样式转移。我们的方法包括一个分割模块,基于学习的图像到图像翻译模块和图像混合优化模块。我们使用了一天的不同魔术时代捕获的不受限制的户外建筑照片,培训了图像到图像翻译神经网络,利用其他语义信息,以更好地匹配和几何形状保存。我们的实验表明,我们的方法可以在前景和背景上产生逼真的照明和颜色演绎,并且在定量和定性上都优于一般图像到图像转换和任意样式转移基线。我们的代码和数据可在https://github.com/hkust-vgd/architectural_style_transfer上获得。

Architectural photography is a genre of photography that focuses on capturing a building or structure in the foreground with dramatic lighting in the background. Inspired by recent successes in image-to-image translation methods, we aim to perform style transfer for architectural photographs. However, the special composition in architectural photography poses great challenges for style transfer in this type of photographs. Existing neural style transfer methods treat the architectural images as a single entity, which would generate mismatched chrominance and destroy geometric features of the original architecture, yielding unrealistic lighting, wrong color rendition, and visual artifacts such as ghosting, appearance distortion, or color mismatching. In this paper, we specialize a neural style transfer method for architectural photography. Our method addresses the composition of the foreground and background in an architectural photograph in a two-branch neural network that separately considers the style transfer of the foreground and the background, respectively. Our method comprises a segmentation module, a learning-based image-to-image translation module, and an image blending optimization module. We trained our image-to-image translation neural network with a new dataset of unconstrained outdoor architectural photographs captured at different magic times of a day, utilizing additional semantic information for better chrominance matching and geometry preservation. Our experiments show that our method can produce photorealistic lighting and color rendition on both the foreground and background, and outperforms general image-to-image translation and arbitrary style transfer baselines quantitatively and qualitatively. Our code and data are available at https://github.com/hkust-vgd/architectural_style_transfer.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源